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Late Eocene (Priabonian) elasmobranchs from the Dry Branch Formation 
(Barnwell Group) of Aiken County, South Carolina, USA

DAVID J. CICIMURRI¹* and JAMES L. KNIGHT²

¹South Carolina State Museum, 301 Gervais Street, Columbia, SC 29201 dave.cicimurri@scmuseum.org
²Department of Biology and Geology, University of South Carolina Aiken, 476 University Parkway, Aiken, SC 29801 

karin@gforcecable.com

A survey of the Eocene (Priabonian) Dry Branch Formation exposed in Aiken County, South Carolina, 
resulted in the collection of thousands of fossil teeth and bone fragments. Two sites located near the city 
of Aiken proved to be particularly productive, and 24 species of elasmobranchs, 11 osteichthyans, and 
three reptiles (one crocodilian and two turtles) have been identified. Herein we focus on the elasmo-
branch species (17 sharks and seven rays) that are part of the assemblage, which includes a new species 
of daggernose shark, Isogomphodon aikenensis n. sp. Cicimurri and Knight. The fossils are derived from 
the upper part of the Dry Branch Formation, and the fossiliferous strata accumulated within a high energy 
nearshore marine depositional environment that was influenced by a river system. Based on the vertebrate 
and invertebrate fossils we identified, the water depth was less than 40 m, and surface water tempera-
ture was at least 22° C . Elasmobranch species composition is similar to other late Eocene elasmobranch 
assemblages reported from the Gulf and Atlantic Coastal plains, particularly Georgia, and several of the 
taxa indicate affinities to the Tethyan region.

Keywords: fossil, elasmobranch, Eocene, Dry Branch Formation, South Carolina

INTRODUCTION
Although Eocene strata within the South Carolina 

coastal plain have been extensively mapped and studied 
lithologically, only scattered accounts of the elasmo-
branch fossils these units contain have been published 
(Gibbes 1848, 1850, Leidy 1877, Leriche 1942, White 
1956, Müller 1999, Cicimurri and Ebersole, 2015). 
Several reports on the elasmobranch species occurring 
in the Barnwell Group of Georgia, which includes the 
Clinchfield, Dry Branch, and Tobacco Road Formations, 
have been published (Case 1981, Case and Borodin 2000, 
Parmley and Cicimurri 2003), but such fossils occurring 
within equivalent strata in South Carolina have been only 
casually mentioned in the literature (Zullo et al. 1982, 
Zullo and Kite 1985, Steele et al. 1986). Cicimurri and 
Ebersole (2015) reported a new species of ray, Pseudae-
tobatus undulatus, from the Dry Branch Formation in 
Aiken County, but only briefly noted other coeval species 
of Myliobatidae Bonaparte, 1838.

Our paper presents the first comprehensive analysis 

of elasmobranch fossils from the Dry Branch Formation 
of South Carolina. More than 3,000 shark and ray teeth 
were collected from two sites in Aiken County (Fig. 1A), 
but only approximately 2,100 of these were complete 
enough to be identified to genus or species, and included 
discovery of a new species of daggernose shark described 
here as Isogomphodon aikenensis n. sp. Cicimurri and 
Knight. In addition to the taxonomic discussions about 
the elasmobranchs we identified, we compare the two 
Aiken assemblages to each other, as well as to those 
previously reported from the Barnwell Group of Georgia. 
We also present our interpretation of the depositional 
environment as inferred from the lithostratigraphy, 
taphonomic indicators, and paleoecology of the extant 
representatives of fossil taxa we have identified. 

GEOLOGICAL CONTEXT

Stratigraphic framework
The fossils described herein were all collected from 

the Eocene Dry Branch Formation in Aiken, Aiken County, 
*author for correspondence
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South Carolina. The Dry Branch Formation is part of 
the Barnwell Group, which also includes the subjacent 
Clinchfield Formation and superjacent Tobacco Road 
Formation. Although the Clinchfield Formation occurs 
in the subsurface of the western part of Aiken County, 

South Carolina (Fallaw and Price 1995, Falls and Prowell 
2001), in central Aiken County the Dry Branch Forma-
tion disconformably overlies kaolinite deposits of the 
lower-to-middle Eocene Huber Formation (Fig. 1B). 
The contact between these two formations has been re-
ported as a sequence boundary, with the base of the Dry 
Branch Formation consisting of a lag deposit (Harris et 
al. 2002, Schroeder et al. 2002) that formed during the 
initial transgression of the Jackson Sea into the region 
(Huddlestun and Hetrick 1986, Huddlestun 1993) at the 
start of the Tejas A4.2 cycle (Harris and Zullo 1991). The 
Dry Branch Formation is disconformably overlain by the 
Tobacco Road Formation (Fig. 1B), and these two units 
have been studied extensively for economically impor-
tant occurrences of kaolinite (Buie and Schrader 1982). 
The base of the Tobacco Road Formation may be very 
pebbly, but it is also relatively easy to identify because 
of its indurated nature, compared to the unconsolidated 
sands of the Dry Branch Formation. In some areas the Dry 
Branch Formation is absent and the Tobacco Road Forma-
tion disconformably overlies Huber Formation kaolinite.

The Dry Branch Formation extends laterally into 
central Georgia, and within this region the formation 
has been subdivided into three members, including the 
Griffins Landing Sand, Twiggs Clay, and Irwinton Sand 
(Huddlestun and Hetrick 1979). The stratigraphic rela-
tionships between the members may not be as simple as 
sub- and superjacent units, as Huddlestun and Hetrick 
(1986) observed intertonguing lateral facies changes. 
Additionally, Huddlestun and Hetrick (1979) and Eversull 
(2005) reported clay beds within the Griffins Landing 
and Irwinton sands that were similar to those occurring 
within the Twiggs Clay. Identification of Eocene units 
within Georgia is facilitated by exposures of relatively 
thick and fossiliferous sections, but identifying and cor-
relating strata in South Carolina has been hampered by 
lack of thick exposures, and those that could be exam-
ined are often highly weathered and devoid of fossils 
(Huddlestun 1982). 

In Aiken County, the Dry Branch Formation is at least 
28 m thick, and Twiggs Clay, Griffins Landing Sand, and 
Irwinton Sand have been identified (Mittwede 1982, 
Nystrom and Willoughby 1982, Zullo and Kite 1985). 
Invertebrate fossils may be common within calcareous 
sediments of the Griffins Landing Sand of Georgia and 
South Carolina, and species include various types of 
barnacles, benthonic foraminifera, a few echinoderm and 
crustacean remains, and the ostreid Crassostrea gigantis-
sima (Finch, 1824) may be locally abundant (Huddlestun 
and Hetrick 1979). Zullo and Kite (1985) reported that 

Figure 1. A. Outline map of southeastern US coastal states 
showing South Carolina, Aiken County (shaded region), and the 
city of Aiken. B. Generalized stratigraphic section of Barnwell 
Group strata in the Aiken, South Carolina area. The fossilifer-
ous horizon at the South Aiken Site occurs approximately 2 
m below the base of the Tobacco Road Formation. A and B 
modified from Cicimurri and Ebersole (2015). Abbreviations: 
NP=calcareous nannoplankton zone, O’burg=Orangeburg.
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been interpreted as representing inner neritic (sands) 
and bay or lagoonal environments (clays), and scour 
structures could represent tidal channels (Huddlestun 
and Hetrick 1986, Fallaw and Price 1995). Overall, the 
formations within the Barnwell Group of South Carolina 
represent a transgressive-regressive sequence, with the 
lower portion of the Dry Branch Formation represent-
ing a high-energy mixed siliciclastic-carbonate shelf that 
periodically received input from a shoreward source, the 
upper part of the formation being deposited in a shallow 
siliciclastic shelf environment, and the Tobacco Road 
Formation accumulating in a lower delta plain environ-
ment, with occasional shoreward transport of marine 
sediments (Segalla et al. 2000). 

Age of deposits
The late Eocene (Priabonian) age of the Dry Branch 

Formation in South Carolina has been demonstrated 
by the various barnacle and clypeasteroid echinoderm 
species that are known to occur (Zullo and Kite 1985, 
Steele et al. 1986, Carter 1987). Huddlestun and Hetrick 
(1986) placed the Twiggs Clay of the Dry Branch Forma-
tion within calcareous nannofossil Zone NP19/20, and 
tektites in the Dry Branch Formation that formed dur-
ing the Chesapeak Bay Impact have a laser fusion age of 
approximately 34.5 Ma (Albin and Wampler 1996, Albin 
1999, Povenmire and Povenmire 2002, Schroeder et al. 
2002, Harris et al. 2002, 2004). 

METHODS
The fossils in this report were collected from two loca-

tions in the Aiken city area, Aiken County, South Carolina. 
The first is the North Aiken Site (NAS), a clay pit south 
of the Aiken Municipal Airport (33.624867, -81.681713 
Wat the eastern entrance). Fossils were recovered as float 
over the course of several years and are included within 
accession SC96.97. This site is currently being developed 
as a housing subdivision and our recent exploration of 
it yielded only a few additional shark teeth near the 
southern limit of the pit. The second is the South Aiken 
Site (SAS) located in a housing subdivision south of the 
Aiken city limit (33.504444, -84.742778). Both sites 
require entry through private property, and permission 
must be obtained before visiting them. 

The SAS is the type locality for Pseudaetobatus undula-
tus (Cicimurri and Ebersole 2015). Its primary exposure 
consists of a 0.6 m-thick section covering a six-square-
meter area. We collected more than 100 kg (dry) of in situ 
bulk matrix from a very fossiliferous horizon within the 
section, and recovered macrofossils that had weathered 

preservation of invertebrate fossils within the Griffins 
Landing Sand was excellent, and that C. gigantissima oc-
curs in Allendale County but not in Aiken County. Further 
to the south in Allendale County, strata attributed to the 
Griffins Landing Sand disconformably overlie the McBean 
Formation (Steele et al. 1986), whereas in Aiken County, 
Griffins Landing deposits disconformably overly the 
Huber Formation (Zullo and Kite 1985). Both Zullo and 
Kite (1985) and Steele et al. (1986) noted occurrences 
of shark and ray teeth within the Griffins Landing Sand, 
but no details were provided. 

Strata assigned to the Twiggs Clay in the Graniteville 
and Hollow Creek quadrangles (west and southwest of 
Aiken, respectively) typically occur as well-layered se-
quences of clay varying in color from gray, green, brown, 
and purple, and clay beds are separated by fine-grained 
quartz sand (Nystrom and Willoughby 1982). Further to 
the south in the Jackson quadrangle, Mittwede (1982) 
reported mustard-yellow to orange-yellow loose, fine- to 
medium-grained quartz sand containing thin, discontinu-
ous clay beds that were attributed to the Irwinton Sand, 
and he noted that the unit thickened markedly towards 
the Aiken area. The fossiliferous Dry Branch Formation 
deposits we examined are consistent with Mittwede’s 
(1982) description of the Irwinton Sand. Non-quartz 
grains that we recovered along with the fossils include 
zircon, kyanite, and muscovite mica, and several types 
of igneous and metamorphic rocks occuring in the Aiken 
area could have been source rocks for these Dry Branch 
sediments (Snoke and Secor 1982, Speer 1982).

Depositional setting
During the Eocene, deposition of marine strata in 

South Carolina and Georgia occurred within the Gulf 
Trough as the Suwanee Current flowed northeastward 
from the Gulf of Mexico (Huddlestun 1990, Eversull 
2005). At this time, siliciclastic deposition (i.e., Dry 
Branch Formation) dominated on the northern side of 
the Gulf Trough, whereas carbonate deposition (i.e., Ocala 
Limestone) dominated to the south (Huddlestun, 1990, 
Eversull 2005).

Zullo and Kite (1985) concluded that the Griffins 
Landing Sand in Aiken County represented subtidal to 
inner shelf deposition, whereas Fallaw and Price (1995) 
suggested a bay or lagoon to open ocean environment 
based on foraminifera they studied. Kirby (2000) be-
lieved that the occurrence of Crassostrea gigantissima 
(Griffins Landing Sand) indicated fully marine environ-
ments as opposed to brackish environments. In Georgia, 
the Irwinton Sand Member is locally fossiliferous and has 
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out of place. A second, mostly covered and nearly vertical 
section, occurs in an E-W trending wall approximately 5 
m to the north, where up to 5 m of thickness is preserved. 
Although no fossils were recovered from this section, we 
were able to determine that the fossiliferous horizon 
within the Dry Branch Formation occurs approximately 
2.0 m below the base of the Tobacco Road Formation. 

In the laboratory, Dry Branch Formation matrix was 
disaggregated in water and gently rinsed through U.S.A. 
Standard Testing Sieves down to 0.25 mm (#60 screen). 
Matrix that passed through this screen was also saved, 
and the resulting concentrates were dried and sorted 
under a binocular microscope. The SAS matrix sample 
yielded about 30 specimens per kilogram, and these 
fossils are included under accessions SC2001.1 and 
SC2013.38.

In order to more accurately identify the many broken 
teeth of Myliobatidae we recovered (particularly those 
in median positions), we repaired as many as possible 
using thin butvar (B-76 in acetone). Specimens were 
photographed with a Nikon Coolpix 995 digital camera 
attached to a Wild compound microscope. The teeth are 
white and details in unretouched photographs were diffi-
cult to discern, but brightness and contrast were adjusted 
slightly for clarity using Adobe Photoshop software. 

In many cases, identification of the elasmobranch teeth 
beyond the generic level was hampered due to small 
sample size and diagenetic alteration of the remains. 
Overall, teeth have a chalky preservation, enameloid 
has been partly or completely leached away, and roots 
are eroded and/or incomplete. Comparison of the Dry 
Branch material to a sample of several thousand teeth 
from the Clinchfield Formation of central Georgia, housed 
at the South Carolina State Museum, and to specimens 
recovered from the Griffins Landing Sand of South Caro-
lina, housed at the McKissick Museum at the University 
of South Carolina, allowed us to more accurately identify 
some of our Dry Branch Formation material. The features 
that we used to identify specimens and distinguish be-
tween similar morphologies are provided in the Remarks 
section for each taxon. Higher level taxonomy largely 
follows Naylor et al. (2012).

Institutional abbreviations—SC, South Carolina 
State Museum, Columbia , South Carolina; MSC, McWane 
Science Center, Birmingham, Alabama.

SYSTEMATIC PALEONTOLOGY

CHONDRICHTHYES Huxley, 1880
HEXANCHIFORMES Buen, 1926

HEXANCHIDAE Gray, 1851

NOTORYNCHUS Ayres, 1855
Notorynchus sp. cf. No. kempi Ward, 1979a

(Fig. 2A–D) 

Referred specimens—SC96.97.4, incomplete lower 
right tooth; SC2001.1.46, lower tooth fragment; 
SC2013.38.1, incomplete lower left tooth. 

Remarks—The incompleteness of the three specimens 
inhibits our ability to accurately identify the Dry Branch 
hexanchid. However, when compared to taxa identified 
from Eocene deposits elsewhere, we found that the acro-
cone mesial cusplets of SC96.97.4 (Fig. 2C–D) are more 
numerous but much smaller than those of Notidanodon 
Cappetta, 1975, and the distal cusplets of SC2013.38.1 
(Fig. 2A, B) also conspicuously diminish in size away from 
the acrocone (Gurr 1962, Casier 1967, Ward 1979a). 
Lower teeth of Hexanchus agassizi Cappetta, 1976 are 
smaller and have 7–12 distal cusplets, as opposed to less 
than six on the Dry Branch taxon (Cappetta 1976, Ward 
1979a). In overall morphology, our material compares 
favorably to lower teeth of Notorynchus, particularly 
No. serratissimus (Agassiz, 1843) and No. kempi. Early to 
middle Eocene teeth of No. serratissimus have a smaller 
crown (less than 17 mm width), fewer distal cusplets, and 
mesial serrations on the acrocone increase in size apically 
(Cappetta 1976, Ward 1979a, Nolf 1988, Van den Eekhaut 
and De Schutter 2009). In contrast, middle to late Eocene 
No. kempi teeth are larger than the aforementioned taxon 
(greater than 30 mm width) and the mesial serrations are 
large and of relatively uniform size (Ward 1979a). The 
Dry Branch hexanchid appears to have been as large as 
No. kempi and the evenness of the acrocone serrations on 
SC96.97.4 (Fig. 2C, D) is also consistent with this species. 

SQUATINIFORMES Buen, 1926
SQUATINIDAE Bonaparte, 1838

SQUATINA Dumeril, 1806
Squatina sp. cf. Sq. prima (Winkler, 1874)

(Fig. 2E)

Referred specimens—SC96.97.9, tooth (Fig. 2E), 
SC96.97.10, tooth; SC2001.1.40, tooth; SC2013.38.2, 
incomplete tooth. 

Remarks—The four Dry Branch Formation teeth are 
morphologically similar to those of Eocene Squatina 
prima reported elsewhere (Case 1981, Kemp et al. 1990, 
Parmley and Cicimurri 2003), and our specific identifica-
tion is tentative because of the small and imperfectly pre-
served sample. Additionally, Squatina tooth morphology 
has remained conservative and relatively stable since the 
Jurassic, largely consisting of a narrow cusp flanked by 
elongated lateral shoulders and low, roughly triangular 
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Figure 2. Shark teeth from the Dry Branch Formation (Priabonian) of Aiken County, South Carolina. A–D. Notorynchus sp. cf. No. 
kempi teeth. Lower left tooth in lingual (A) and labial (B) views, SC2013.38.1. Lower right tooth in labial (C) and lingual (D) views, 
SC96.97.4. E. Squatina sp. cf. Sq. prima. Antero-lateral tooth in labial view, SC96.97.9. F, G. Nebrius sp. cf. Neb. thielensi. Antero-
lateral tooth in labial (F) and occlusal (G) views, SC2013.38.5. Labial at top in G. H. Ginglymostomatidae. Tooth in labial view, 
SC2013.38.7. I–O. Carcharias sp. Third lower right anterior tooth in labial (I) view, SC2001.1.55. Third upper right anterior tooth 
in lingual (J) and labial (K) views, SC2001.1.57. First lower right anterior tooth in labial (L) view, SC2001.1.59. Second lower right 
anterior tooth in labial (M) view, SC96.97.44.1. Second upper right anterior tooth in lingual (N) view, SC96.97.42. Lower left lateral 
tooth in lingual (O) view, SC96.97.43. P–S. Alopias sp. Tooth in labial (P) and lingual (Q) views, SC2001.1.65. Tooth in labial (R) and 
lingual (S) views, SC2001.1.66. Scale bars=1 cm in A–D, I–K, N, O; 5 mm in E–G, L–M, P–S; 1 mm in H.
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(in basal view) root (Cappetta 1987).

ORECTOLOBIFORMES Applegate, 1972
GINGLYMOSTOMATIDAE Gill, 1862

NEBRIUS Rüppell, 1837
Nebrius sp. cf. Neb. thielensi (Winkler, 1874) 

(Fig. 2F, G)

Referred specimens—SC96.97.1, three incomplete 
teeth; SC2001.1.41, incomplete tooth; SC2013.38.3, an-
terior tooth; SC2013.38.4, posterior tooth; SC2013.38.5, 
anterior tooth (Fig. 2F, G); SC2013.38.6, two incomplete 
teeth. 

Remarks—We identify these nine orectolobid teeth 
as Nebrius because they have a wide crown bearing a 
central cusp that is flanked by up to seven pairs of lateral 
cusplets. In contrast, teeth of morphologically similar 
Ginglymostoma Müller and Henle, 1837 have up to two 
pairs of lateral cusplets flanking the main cusp (Herman 
et al. 1992, Purdy et al. 2001). Unfortunately, identify-
ing fossil Nebrius teeth is often hampered by the fact 
that original descriptions of fossil species are based on 
relatively few specimens, and the degree of morphologi-
cal variation within true biological species is unknown. 
There is a lack of agreement as to species occurrences 
within Eocene strata of North America, with Neb. thielensi 
(Case and Borodin 2000, Parmley and Cicimurri 2003), 
Neb. blackenhorni (Stromer, 1903) (Thurmond and Jones 
1981), Neb. serra (Manning and Standhardt 1986), and 
Neb. obliquus (Leidy 1877) (Ginglymostoma obliquum 
of Case 1981) being recognized in the literature. Kent 
(1994) reported Neb. thielensi (p. 34, fig. 8.3b) and Neb. 
blackenhorni (p. 34, fig. 8.3a) from the lower Eocene Nan-
jemoy Formation of Maryland and Virginia (Kent 1999), 
and he considered the possibility that the morpholo-
gies represented heterodonty within a single species. 
Woodward (1889: pl. 16, fig. 9) identified teeth from the 
Eocene of Alabama as Gi. serra (Leidy 1877), but Leriche 
(1942:27, 28) and White (1956:146) synonymized the 
record with Neb. obliquus. However, Thurmond and Jones 
(1981:44) reported that the middle Eocene Gosport Sand 
of Alabama contained a continuous morphological series 
between the obliquus and serra morphologies, and they 
synonymized obliquus with serra. Unfortunately, Thur-
mond and Jones (1981) only provided an illustration of 
Leidy’s (1877) original material, not specimens from 
the Gosport Sand. Noubhani and Cappetta (1997) con-
sidered the identification of Eocene teeth as Neb. serra 
to be incorrect and preferred instead to identify teeth 
as Neb. obliquus (also Darteville and Casier 1943). The 
precise geologic age of Neb. serra, collected from South 

Carolina coastal plain deposits is unknown, and the fos-
sils could be as old as Eocene or as young as Pleistocene 
(see Leidy 1877: pl. 34). Although Neb. obliquus was 
based on a single tooth from the Eocene of New Jersey, 
it has been reported as being common in lower Eocene 
(Ypresian) strata elsewhere (Noubhani and Cappetta 
1997, Cappetta 2012).

Morphologically, Neb. thielensi was differentiated from 
Neb. blackenhorni in having a crown that is wide but 
rather low, a larger and less distally inclined main cusp, 
fewer lateral cusplets, and a shorter but conspicuously 
flat or slightly bifid labial protuberance (Winkler 1874, 
Arambourg 1952). In contrast, Neb. blackenhorni has a 
rather high crown in proportion to width, there are ten 
or more cusplets on the mesial side of the main cusp, and 
the labial protuberance is more elongated and rounded 
basally. These generalities are seen in the suite of teeth il-
lustrated in Arambourg (1952, pl. 22), as well as Stromer 
1905, and teeth originally identified as Ginglymostoma 
fourtaui (Priem, 1905) (Priem 1907, 1909). 

Noubhani and Cappetta (1997) used features like 
tooth size, labial crown profile, shape of the labial pro-
tuberance, and concavity of the basal attachment surface 
to separate Neb. thielensi from Neb. obliquus. Some late 
Eocene records of Nebrius, including teeth identified 
as Neb. thielensi (Case and Borodin 2000, Parmley and 
Cicimurri 2003) and Neb. obliquus (Case 1981), appear 
to be conspecific, as all have a large and rather erect main 
cusp flanked by 7–9 cusplets, and a basal protuberance 
that is moderately elongated and often weakly bifid. The 
Dry Branch Nebrius teeth lack enameloid, making direct 
comparisons to other specimens difficult, but they are 
comparable to Neb. thielensi (note that the name has 
also variously been published as Neb. thielensis and Neb. 
thielense; see Cappetta [2012] for further discussion on 
spelling) in that they are larger than Neb. obliquus sensu 
Leidy (1877: pl. 34, fig. 14), have a larger main cusp, 
fewer lateral cusplets, and shorter and weakly bifid labial 
protuberance.

GINGLYMOSTOMATIDAE gen. et sp. indet.
(Fig. 2H)

Referred specimen—SC2013.38.7, incomplete an-
terior tooth.

Remarks—This specimen differs from Nebrius sp. cf. 
Neb. thielensi (see above) in having only a single pair of 
large lateral cusplets, and the labial crown foot is dis-
tinctively bifid but not drawn out into an elongate basal 
protuberance. SC2013.38.7 is similar to the anterior teeth 
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tooth.
Remarks—Specimens bear a broadly triangular, dis-

tally curving crown. Unfortunately, the enameloid is lack-
ing due to taphonomic processes, and the dentine cores 
are exposed. There is no indication that lateral cusplets 
were present on SC2001.1.65 (Fig. 2P, Q), but dentine 
cores of what appear to be two mesial basal cusplets 
and an incipient distal cusplet are visible on SC2001.1.66 
(Fig. 2R, S). Unfortunately, the enameloid on the two 
specimens is imperfectly preserved, and the shape of 
the crown may not be accurately reflected. Coupled with 
the very limited sample size (n=2), we could therefore 
not effectively compare the Dry Branch Alopias teeth 
to those of any of the several Eocene species that have 
been described, which include Al. crochardi Ward, 1978, 
Al. leeensis Ward, 1978, Al. denticulatus Cappetta, 1981, 
and Al. alabamensis White, 1956. The crown foot of both 
Dry Branch Formation teeth is very convex and obviously 
overhangs the root (Fig. 2Q, S), and the lingual side of the 
root is bisected by a shallow nutritive groove (Fig. 2P, R). 
These features are consistent with teeth of Al. crochardi 
and Al. denticulatus, but our specimens appear to have 
lacked cusplets like those seen on Al. denticulatus. Teeth 
of Al. leeensis and A. alabamensis lack nutritive grooves 
and crowns appear much wider than seen on the Dry 
Branch Formation specimens. Our two specimens are 
similar to teeth we observed within the jaws of Al. super-
ciliosus (Lowe, 1841) housed at SC, and perhaps the Dry 
Branch Formation taxon is related to this “group” (sensu 
Cappetta, 2012). A larger and better preserved sample 
is needed for a more specific determination.

 CARCHARHINIFORMES Compagno, 1973
GALEOCERDIDAE Herman and van den Eeckhaut, 2010

Genus Galeocerdo Müller and Henle, 1837
Galeocerdo sp. 

(Fig. 3E, F)

Referred specimens—SC96.97.11, three incom-
plete teeth; SC2001.1.8, incomplete anterior tooth; 
SC2001.1.9, lateral tooth; SC2001.1.10, three partial 
teeth; SC2013.38.16, anterolateral tooth (Fig. 3E, F); 
SC2013.38.17, incomplete lateral tooth; SC2013.38.18, 
incomplete tooth; SC2013.38.19, four incomplete teeth.

Remarks—All 15 specimens lack enameloid but they 
are morphologically consistent with Galeocerdo, having 
an elongated and broadly convex mesial edge, short distal 
edge that forms a triangular cusp with the mesial edge, 
and elongate, serrated distal heel. In terms of gross mor-
phology, the Dry Branch Formation specimens differ from 
Eocene Galeocerdo eaglesomei White, 1926 in having a 

of Cretaceous Plicatoscyllium Case and Cappetta, 1997, 
but there is no indication of labial crown ornamenta-
tion. The single pair of lateral cusplets also distinguishes 
SC2013.38.7 from the various early Paleogene species 
of Ginglymostoma (Noubhani and Cappetta 1997). In 
terms of gross morphology, SC2013.38.7 is similar to 
Protoginglymostoma ypresiensis (Casier, 1946) from the 
early to middle Eocene of Belgium and Morocco (Casier 
1946, Herman 1977, Tabuce et al. 2005), but the poor 
condition of the only available tooth makes a more pre-
cise identification difficult. 

LAMNIFORMES Berg, 1958
ODONTASPIDIDAE Müller and Henle, 1838

CARCHARIAS Rafinesque, 1810
cf. Carcharias sp. 

(Fig. 2I–O)

Referred specimens—SC96.97.42, second upper 
right anterior tooth (Fig. 2N); SC96.97.43, lower left 
lateral tooth (Fig. 2O); SC96.97.44.1, second lower 
right anterior tooth (Fig. 2M); SC96.97.44.2, four teeth; 
SC96.97.45, 236 incomplete teeth; SC2001.1.55, third 
lower right anterior tooth (Fig. 2I); SC2001.1.56, an-
terior tooth; SC2001.1.57, third upper right anterior 
tooth (Fig. 2J, K); SC2001.1.58, six incomplete anterior 
teeth; SC2001.1.59, first lower right anterior tooth (Fig. 
2L); SC2001.1.60, three posterior teeth; SC2001.1.61, 
40 incomplete teeth; SC2013.38.8, anterolateral tooth; 
SC2013.38.9, four partial teeth; SC2013.38.10, three 
partial teeth; SC2013.38.11, lateral tooth; SC2013.38.12, 
14 tooth fragments; SC2013.38.13, tooth; SC2013.38.14, 
two incomplete anterior teeth. 

Remarks—The 332 teeth in the sample are simi-
lar to extant Carcharias taurus Rafinesque, 1810, and 
examination of two Recent dentitions of this species 
(SC2001.120.6 and SC86.62.2) allowed us to identify 
various anterior and lateral positions in the fossil spe-
cies. Unfortunately, diagenetic alteration of the teeth 
makes confidently assigning the fossil material to any 
of various species that have been reported from Eocene 
strata difficult, as characteristics that have been used 
for species identification, like the number and shape of 
lateral cusplets and crown ornamentation, are generally 
not evident or imperfectly preserved. 

ALOPIIDAE Bonaparte, 1838
ALOPIAS Rafinesque, 1810

Alopias sp.
(Fig. 2P–S)

Referred specimens—SC2001.1.65, tooth; SC2001.1.66, 
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Figure 3. Carcharhiniform shark teeth the Dry Branch Formation (Priabonian) of Aiken County, South Carolina. A–D. Physogaleus 
sp. cf. Ph. latus. Upper left lateral tooth in lingual (A) and labial (B) views, SC2013.38.65. Lower left anterior tooth in labial (C) 
and lingual (D) views, SC96.97.26. E, F. Galeocerdo sp. Anterolateral tooth in lingual (E) and labial (F) views, SC2013.38.16. G–I. 
Abdounia sp. cf. Ab. enniskilleni. Anterior tooth in lingual (G) and labial (H) views, SC96.97.30. Lateral tooth in lingual (I) view, 
SC96.97.31. J–L. Rhizoprionodon ?ganntourensis. Anterolateral tooth in labial (J) and lingual (K) views, SC2013.38.98. Lateral tooth 
in lingual view (L), SC2013.38.99. M–P. Hemipristis sp. cf. He. curvatus. Upper left lateral tooth in lingual (M) and labial (N) views, 
SC2001.1.21. Lower right anterior tooth in lingual (O) and labial (P) views, SC2013.28.35. Q, R. Negaprion gilmorei. Upper right 
anterior tooth in lingual (Q) view, SC2013.38.61. Lower right anterolateral tooth in lingual (R) view, SC2013.38.64. Scale bars=1 
cm in A–F, M–N, Q–R; 5 mm in G–L, O–P.
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lower and more uniformly convex mesial cutting edge, 
as opposed to a rather high and conspicuously convex 
apical portion to the mesial edge. We believe that the 
Dry Branch Formation Galeocerdo teeth are comparable 
to specimens from the Clinchfield Formation of Georgia 
identified as Ga. alabamensis Leriche, 1942 by Parmley 
and Cicimurri (2003). However, the specific identifica-
tion made by those authors appears to be in error, as 
examination of Leriche’s (1942) alabamensis holotype 
leads us to conclude that it is actually Physogaleus Cap-
petta, 1980. The assignment of the Clichfield material to 
Ga. alabamensis by Parmley and Cicimurri (2003) was 
based on White’s (1956) identification of specimens 
from South Carolina as Ga. alabamensis, which are not 
conspecific with Leriche’s (1942) taxon. 

In addition to Alabama (White 1956, Thurmond and 
Jones 1981), Ga. alabamensis was also documented from 
Arkansas (Westgate 1984) and Louisiana (Manning and 
Standhardt 1986). Another species, Ga. clarkensis, was 
founded by White (1956) based on a small number of 
teeth from the late middle Eocene of Alabama, but Man-
ning and Standhardt (1986) synonymized this taxon with 
Ga. alabamensis, considering the former to represent up-
per teeth and the latter lower teeth in the same dentition. 
However, as noted above, the “Galeocerdo” alabamensis 
morphology is more appropriately identified as Physo-
galeus. In Georgia, Case (1981) identified Ga. clarkensis 
from the Clinchfield and Dry Branch (Twiggs Clay Mem-
ber) Formations, but Case and Borodin (2000) later 
reported Ga. latidens Agassiz, 1843 from the Dry Branch 
Formation (Irwinton Sand Member). It is apparent that 
Eocene records of Galeocerdo from North America are in 
further need of evaluation. 

Our examination of Ga. clarkensis teeth from the 
middle Eocene (Bartonian) Gosport Sand (Claiborne 
Group) of Alabama, housed at MSC, showed that the 
mesial cutting edge bears coarse, compound serrations 
(largest serrations bear smaller serrations). Additionally, 
examination of Ga. eaglesomei teeth from the middle 
Eocene (Lutetian) Lisbon Formation (Claiborne Group) 
of Alabama, also at MSC, revealed that serration on 
the mesial edge is simple (large serrations do not bear 
smaller serrations). As our specimens are incompletely 
preserved, we cannot determine the precise shape of 
the original crown or if the serrations were simple or 
compound (serrations on serrations), and we refrain 
from making a specific identification.

CARCHARHINIDAE Jordan and Evermann, 1896
PHYSOGALEUS Cappetta, 1980

Physogaleus sp. aff. Ph. latus (Storms, 1894)
(Fig. 3A–D)

Referred specimens—SC96.97.26, anterior tooth; 
SC96.97.27, lateral tooth; SC96.97.28, lateral tooth; 
SC96.97.29, 18 incomplete teeth; SC2001.1.51, ante-
rior tooth; SC2001.1.52, lateral tooth; SC2001.1.53, 
posterior tooth; SC2001.1.54, five incomplete teeth; 
SC2013.38.56, lateral tooth; SC2013.38.57, anterior 
tooth; SC2013.38.58, lateral tooth; SC2013.38.59, tooth; 
SC2013.38.60, six incomplete teeth.

Remarks—Dignathic heterodonty is evident among 
the 39 Dry Branch specimens, with upper teeth having 
a broader central cusp and better developed serrations 
on the lateral shoulders (Fig. 3A, B) compared to lower 
teeth. Lower teeth have a very narrow, sigmoidal cusp 
and significantly thickened root (Fig. 3C, D). The Physo-
galeus teeth are similar in gross morphology to those of 
Galeocerdo, but they are smaller in overall size and de-
velopment of serrations (especially on the mesial edge) 
is much reduced. For example, only the basal half of the 
mesial cutting edge of Physogaleus teeth is serrated, 
whereas the apical half is smooth. This phenomenon 
can be discerned even on teeth lacking enameloid, as the 
dentine core preserves small denticulation basally, but 
the edge is smooth apically. 

Several of the species that White (1926) described 
from the Eocene of Nigeria, including Eugaleus falconeri, 
Sphyrna itoriensis, Sph. tortilis, and Carcharhinus niger-
iensis, have been placed within Physogaleus (Cappetta, 
2006), but it is as yet unclear if the morphologies rep-
resent multiple species or heterodonty within a single 
species (monognathic, dignathic, and gynandric heter-
odonty). The teeth we tentatively identify as Ph. latus 
compare favorably to teeth described by Storms (1894) 
from the lower Oligocene of Belgium, and several of the 
Dry Branch teeth (i.e., Fig. 3A, B) are practically identical 
to the specimen he illustrates in plate 6, figure 17c. These 
particular teeth differ from other Eocene and Oligocene 
species of Physogaleus in that the cusp is broad with bi-
convex cutting edges, and the cusp is well differentiated 
from the coarsely serrated distal heel and basal half of the 
mesial cutting edge (Winkler 1876, Reinecke and others 
2005, Haye et al. 2008, Reinecke et al. 2008). Teeth that 
we identify as being from anterior files (i.e., Fig. 3C, D) 
are comparable to the specimen illustrated by Storms 
(1894; pl. 6, fig. 18). 

Case (1981) named Galeorhinus huberensis (=Ph. hube-
rensis) from the Dry Branch Formation of Georgia, and we 
consider that taxon to be conspecific with Phy. secundus 
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(Winkler, 1876) as reported by Parmley and Cicimurri 
(2003) from the Clinchfield Formation of central Georgia. 
The South Carolina Dry Branch taxon appears to differ 
from the Georgia material in that the teeth can attain 
larger size, the cusp is wider, distal serrations are smaller 
and more numerous, and the mesial serrations may be 
larger or more numerous.

ABDOUNIA Cappetta, 1980
Abdounia enniskilleni (White, 1956)

(Fig. 3G–I)

Referred specimens—SC96.97.30, anterior 
tooth; SC96.97.31, lateral tooth; SC96.97.32, 43 teeth; 
SC2001.1.43, anterior tooth; SC2001.1.44, three teeth; 
SC2013.38.15, incomplete tooth.

Remarks—Gradient monognathic heterodonty is 
evident among the 50 specimens we examined, with 
anterior teeth having tall vertical main cusps (Fig. 3G, 
H), but cusps becoming lower, broader, and distally 
curved (Fig. 3I) in lateral and posterior positions. Fine 
vertical enameloid ridges are preserved on specimens 
from the NAS, and this feature, combined with the gross 
morphology of teeth, leads us to assign them to Abdounia 
enniskilleni. This species has been reported from several 
upper Eocene localities in the Gulf and Atlantic coastal 
plains (often identified as Scyliorhinus enniskilleni prior 
to 1987), including Louisiana (Manning and Standhardt 
1986), Arkansas (Westgate 1984), Alabama (White 
1956), North Carolina (Timmerman and Chandler 1995), 
and Georgia (Case 1981, Case and Borodin 2000, Parmley 
and Cicimurri 2003). Within the Dry Branch sample, Ab. 
enniskilleni can be differentiated from small odontaspidid 
teeth in that the lateral cusplets are large in relation to 
the main cusp, the lingual root face is flat, and root lobes 
are shorter and more triangular in outline.

RHIZOPRIONODON Whitley, 1929
Rhizoprionodon ?ganntourensis (Arambourg, 1952)

(Fig. 3J–L)

Referred specimens—SC96.97.2, four teeth; 
SC2001.1.18, tooth; SC2001.1.19, 40 teeth; SC2013.38.98, 
anterior tooth (Fig. 3J, K); SC2013.38.99, lateral tooth (Fig. 
3L); SC2013.38.100, 18 teeth; SC2013.38.101, 32 teeth; 
SC2013.38.102, eight posterior teeth; SC2013.38.103, 
eight distal lateral teeth.

Remarks—One hundred thirteen Dry Branch Forma-
tion teeth are similar to those of extant Rhizoprionodon, 
and to Eocene Rhiz. ganntourensis, in particular. The dis-
tal heel of Rhizoprionodon, including Rhiz. ganntourensis, 

is generally cuspidate (Arambourg 1952, Herman et al. 
1991, Case et al. 1996, Noubhani and Cappetta 1997, 
Mustafa et al. 2005), but our specimens lack enameloid 
and this feature is not preserved. However, we exam-
ined a tooth of Rhiz. sp. cf. Rhiz. ganntourensis that was 
recovered by Zullo and Kite (1985) from the Griffins 
Landing Sand (see Appendix 1), and found that it is very 
similar to the material listed above. The well preserved 
Griffins Landing Sand tooth exhibits a cuspidate distal 
heel, but the translucent enameloid allows us to view 
the unifromly convex dentine core of the heel, as can be 
seen on the specimens in our sample.

NEGAPRION Whitley, 1940
Negaprion gilmorei (Leriche 1942)

(Fig. 3Q, R)

Referred specimens—SC96.97.37, upper right ante-
rior tooth; SC96.97.38, upper right antero-lateral tooth; 
SC96.97.39, upper right lateral tooth; SC96.97.40, 101 
upper teeth; SC96.97.41, 24 lower teeth; SC2001.1.47, 
upper tooth; SC2001.1.48, tooth; SC2001.1.49, lower 
tooth; SC2001.1.50, 75 teeth; SC2013.38.61, upper an-
terior tooth; SC2013.38.62, upper right lateral tooth; 
SC2013.38.63, upper right tooth; SC2013.38.64, lower 
tooth; SC2013.38.65, seven lower teeth; SC2013.38.66, 
seven upper anterior teeth; SC2013.38.67, 29 teeth; 
SC2013.38.68, 14 lower teeth.

Remarks—This species is represented by 267 speci-
mens that exhibit dignathic heterodonty, with upper 
teeth having a broader cusp flanked by elongate, oblique 
lateral shoulders (Fig. 3Q), whereas lower teeth have a 
shorter and narrower cusp, and smooth shoulders that 
are nearly perpendicular to the cusp (Fig. 3R). Although 
the enameloid is often missing, the remaining dentine 
core of the lateral shoulders on some upper teeth shows 
indications that they were at least weakly serrated. 

Leriche (1942) erected Sphyrna gilmorei based on 
teeth occurring in upper Eocene deposits of Alabama. 
White (1956) assigned the morphology to the subspe-
cies Negaprion gibbesi gilmorei, and Müller (1999) and 
Adnet et al. (2007) used the name Carcharhinus gilmorei. 
Underwood et al. (2011) and Underwood and Gunter 
(2012) identified unserrated to weakly serrated teeth, 
such as those reported here, as Negaprion rather than 
Carcharhinus. If our association is correct, the dignathic 
heterodonty of Neg. gilmorei is more pronounced than 
in a dentition of Recent Neg. brevirostris (Poey, 1868) we 
examined (SC uncurated). 

We believe that Eocene material from North Carolina 
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and Georgia that was referred to Neg. eurybathrodon 
(Blake, 1862) is more appropriately identified as Neg. 
gilmorei (Case 1981, Case and Borodin 2000, Parmley and 
Cicimurri 2003). Teeth of Miocene Neg. eurybathrodon 
are up to 2 cm in height and width, much larger than 
Eocene specimens attributed to this species. The main 
cusp of Neg. eurybathrodon upper teeth is also much 
taller but narrower than the Eocene specimens, and the 
lateral shoulders are more evenly serrated (White 1955). 
Negaprion gilmorei is common in the Dry Branch Forma-
tion, and it is the dominant elasmobranch taxon within 
the Clinchfield Formation of Georgia, based on several 
thousand teeth within two SC accessions (SC2004.34 and 
SC2013.44; also Parmley and Cicimurri 2003).

Genus ISOGOMPHODON Gill 1862
Isogomphodon aikenensis Cicimurri and Knight n. sp. 

(Fig. 4E–P)

Holotype—SC2013.38.110 (Fig. 4E), upper anterior 
tooth.

Paratypes—SC2013.38.111 (Fig. 4P), upper antero-
lateral tooth; SC2013.38.119 (Fig. 4H, I), lower anterior 
tooth; SC2013.38.112 (Fig. 4J, K), upper lateral tooth; 
SC2013.38.115 (Fig. 4N, O), posterior tooth.

Referred specimens—SC2001.1.62, upper tooth; 
SC2001.1.63, lower tooth; SC2001.1.64, 97 teeth; 
SC2013.38.113, symphyseal tooth; SC2013.38.114, pos-
terolateral tooth (Fig. 4L, M); SC2013.38.116, upper tooth; 
SC2013.38.117, 15 symphyseal teeth; SC2013.38.118, 
anterior tooth; SC2013.38.120, four anterior teeth; 
SC2013.38.121, six anterior teeth; SC2013.38.122, 52 
teeth; SC2013.38.123.1 lower lateral tooth (Fig. 4F, G), 
SC2013.38.123.2, 84 teeth; SC2013.38.124, 112 teeth; 
SC2013.38.125, 16 posterior teeth. 

Occurrence—Type locality: South Aiken Site (SAS) 
33.504444, -84.742778, Aiken County, South Carolina; 
yellow, orange and red variegated sand, Upper Eocene 
(Priabonian) Dry Branch Formation, approximately two 
meters below the contact with the overlying Tobacco 
Road Formation. 

Etymology—The species name recognizes the city of 
Aiken and Aiken County, South Carolina, the only known 
area from which Eocene Isogomphodon have thus far 
been documented from North America.

Diagnosis—Nearly 400 specimens are referred to the 
new species, which differs from Recent Isogomphodon 
oxyrhynchus (Müller and Henle 1841) in that all teeth 
have smooth cutting edges extending from the apex to 
the very base of the crown. In contrast, the upper teeth 

of the extant species are weakly serrated and edges of 
lower anterior teeth are often limited to the upper half 
of the crown. In addition, the Eocene teeth have shorter 
cusps, many exhibit very convex lateral shoulders (espe-
cially more lateral positions), and the root lobes are more 
elongated and divergent (Herman et al. 1991, Compagno 
et al. 2005). 

The new species differs from the fossil species I. acuar-
ius (Probst 1879), I. lerichei (Darteville and Casier 1943), 
I. caunellensis (Cappetta 1970), and I. gracilis (Jonet 
1966) in being smaller in overall size. Additionally, the 
Dry Branch species has narrower upper anterior teeth 
and complete cutting edges on all teeth when compared 
to I. caunellensis, and the convexity of the lateral shoul-
ders of anterior teeth appears to be more pronounced 
than on I. acuarius (Cappetta 1970, Case 1980, Müller 
1999). The transition from main cusp to lateral shoulders 
appears to be slightly more angular on teeth of I. lerichei 
(Darteville and Casier 1943).

Description—These 393 distinctive teeth generally 
measure less than 5 mm in total height, although some 
anterior teeth are up to 7 mm. All teeth have a tall and 
narrow cusp, and enameloid shoulders that extend nearly 
to the tips of the root lobes. The cutting edges of all teeth 
are smooth and extend to the tips of lateral shoulders. 
The holotype, SC2013.38.110, is an upper anterior tooth 
that is slightly asymmetrical (Fig. 4E). The crown consists 
of a tall, narrow and erect cusp, with cutting edges that 
diverge slightly towards the crown base. Elongate lat-
eral shoulders extend obliquely onto the root lobes. The 
root is bilobate, with rather short and sub-rectangular 
lobes that are separated by a narrow but deep U-shaped 
interlobe area. The mesial lobe is slightly smaller than 
the distal lobe, and a deep but narrow nutritive groove 
bisects the flat lingual root face. Upper anterolateral 
teeth (Fig. 4P) are wider than those near the jaw sym-
physis. The cusp is narrow and flat as seen in more an-
terior positions, but slightly distally inclined. The lateral 
shoulders are more elongated and nearly horizontal. The 
sub-rectangular root lobes are lower, more elongated and 
divergent than on anterior teeth, and the interlobe area 
is wider but shallower.

Lower anterior teeth (Fig. 4H, I) have a very tall and 
narrow cusp, with sub-parallel cutting edges. Lateral 
shoulders are short and nearly horizontal. The bilobate 
root is bisected by a deep, narrow nutritive groove, and 
the short lobes are widely separated by a U-shaped 
interlobe area. Lower lateral teeth (Fig. 4F, G) are simi-
lar to those in the upper jaw, but the cusp is narrower, 
lateral shoulders are shorter, the transition from cusp 
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to shoulder is more angular, and the mesial root lobe is 
shorter than the distal one. The root is low and bilobate, 
with rounded and diverging lobes that are separated by 
a wide and shallow U-shaped interlobe area. A narrow 
but deep nutritive groove is located on the lingual face. 

Posterolateral and posterior teeth (Fig. 4L–O) are 
small with a T-shaped outline. The cusp is triangular 
but sharply tapering apically, rather low compared to 
teeth in more anterior positions. The cusp is vertical to 
slightly distally inclined, flat in profile. Lateral shoulders 
are short to elongate, perpendicular to the cusp, and the 
transition from cusp to shoulder is more angular than 
seen on more anterior jaw positions. The lateral shoul-
ders in these positions are very convex at their distal 
extremities, resulting in a cusp-like appearance in lingual 
view. The root is bilobate with short, rounded, highly 
diverging lobes, which are separated by a broad, shallow 
to deep U-shaped interlobe area. The lingual face bears 

a centrally located narrow but deep nutritive groove. 
Remarks—A number of fossil species have been as-

signed to Aprionodon Poey, 1868, a junior synonym of 
Isogomphodon, including Ap. acuarias (Probst, 1879), 
Ap. amekiensis White, 1926, Ap. caunellensis Cappetta, 
1970, Ap. collata (Eastman, 1904), Ap. elongatus (Leriche, 
1910), Ap. gibbesi (Woodward, 1889), Ap. gracilis (Jonet, 
1966), Ap. frequens (Dames, 1883), Ap. lerichei Darteville 
and Casier, 1943, Ap. macrorhiza Jonet, 1966, Ap. mar-
çaisi Arambourg, 1952, and a subspecies, Ap. lerichei var. 
minuta Jonet, 1966. Although some of these species are 
at least in part based on specimens correctly assigned 
to the genus, most are appropriately referred to other 
genera or are perhaps nomina dubia. 

For example, Carcharhinus collata Eastman, 1904 
was referred to Aprionodon by Powlowska (1960), but 
illustrations of three teeth in Eastman (1904: pl. 22, figs. 
3-5) show them to represent Carcharhinus and, possibly, 

Figure 4 . Carcharhiniform shark teeth from the Dry Branch Formation (Priabonian) of Aiken County, South Carolina. A–D. Carcha-
rhinidae indeterminate. Anterolateral tooth in labial (A) and lingual (B) views, SC2013.38.105. Anterolateral tooth in labial (C) and 
lingual (D) views, SC2001.1.43. Labial at right in C. E–P. Isogomphodon aikenensis n. sp. Upper anterior tooth in lingual view (E), 
SC2013.38.110 (Holotype). Lower lateral tooth in labial (F) and lingual (G) views, SC2013.38.123.1. Lower anterior tooth in labial 
(H) and lingual (I) views, SC2013.38.119 (Paratype). Upper lateral tooth in labial (J) and lingual (K) views, SC2013.38.112 (Para-
type). Posterolateral tooth in labial (L) and lingual (M) views, SC2013.38.114. Posterior tooth in labial (N) and lingual (O) views, 
SC2013.38.115 (Paratype). Upper anterolateral tooth in lingual (P) view, SC2013.38.111 (Paratype). Scale bars=1 cm in A–D; 5 mm 
in E–P.
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Negaprion. Antunes and Jonet (1970) concluded that 
Jonet’s (1966) Ap. macrhorhiza represents symphyseal 
teeth of indeterminate Carcharhinidae. The teeth that 
White (1926) illustrated as Ap. amekiensis (pl. 8, figs. 
11-26) largely appear to be Carcharhinus (with some pos-
sibly representing Negaprion), and Arambourg’s (1952) 
Ap. marçaisi morphology was identified as Carcharhinus 
marçaisi by Noubhani and Cappetta (1997: 151). Teeth 
of the Ap. gibbesi (Woodward 1889) and Ap. elongatus 
(Leriche 1910) species have weakly to coarsely serrated 
heels, particularly the uppers, and both species have been 
placed within Carcharhinus (Reinecke et al. 2001, 2005, 
Haye et al. 2008, Cicimurri and Knight 2009). 

With regard to Jonet’s (1966) Ap. lerichei var. minuta 
subspecies, Cappetta (1970) considered the material to 
represent the lateral teeth of Isogomphodon acuarius, 
but he later (2006) treated the morphology as a valid 
species distinct from I. acuarius without providing sup-
porting evidence. However, our examination of the teeth 
illustrated in Jonet’s (1966) plate II leads us to conclude 
that many of them, including the type specimen shown 
in figure 1, are not Isogomphodon. Specimens shown in 
figures 7, 11 and 13 in Jonet’s (1966) plate II appear to 
be Isogomphodon, but the specific attribution is in need 
of further evaluation. 

Dames’ (1883) Carcharhinus (Aprionodon) frequens 
from the late Eocene of Egypt contains more than one 
species of shark. His description of the teeth (pp. 143, 
144) and accompanying illustrations (pl. 3, figs. 7a–p) 
indicate that some specimens he examined (figs. 7b, f) 
are Isogomphodon. However, the frequens morphology is 
considered valid but has been attributed to Carcharhinus 
(i.e., Cappetta 1970) and, more recently, Negaprion (Un-
derwood et al. 2011). As is the case with Jonet’s (1966) 
gracilis morphology, the Isogomphodon teeth reported 
by Dames (1883) are in need of further study. 

Cappetta (1970) believed that Jonet’s (1966) Ap. graci-
lis species was actually the anterior teeth of I. acuarius. 
However, Cappetta (2006) later treated the species as 
valid, but in doing so provided no comment supporting 
the conclusion. We concur with Cappetta (1970) that 
teeth illustrated by Jonet (1966: pl. 2, figs. 14–21) repre-
sent anterior teeth, and they are not dissimilar from those 
of I. acuarius. Regardless of whether Jonet’s (1966) spe-
cies is valid or conspecific with I. acuarius, the teeth are 
both larger and have more elongated cusps than I. aike-
nensis n. sp. Case and Cappetta (1990) placed Cappetta’s 
(1970) Ap. caunellensis species within Carcharhinus, but 
later Cappetta (2006, 2012) supported identification as 
Isogomphodon caunellensis. If valid, I. caunellensis teeth 

are larger than I. aikenensis, have wider upper anterior 
teeth, and lower anterior teeth with incomplete cutting 
edges. Probst (1879) illustrated a specimen (pl. 1, figs. 
76-77) of I. acuarius from his sample of approximately 
50 teeth that is not dissimilar to anterior teeth of I. aike-
nensis. However, his description of the material (p. 140) 
is generic for the genus, but the maximum tooth size he 
reported (10 mm) is larger than that of I. aikenensis (7 
mm). 

Isogomphodon lerichei was based on a suite of Miocene 
teeth described by Darteville and Casier (1943). However, 
this taxon also appears to be a mixture of multiple spe-
cies, with teeth of Isogomphodon and non-Isogomphodon 
species included in the illustrated suite of teeth provided 
by Darteville and Casier (1943: i.e., pl. 13, figs. 41, 42, 49, 
50). This calls into question the validity of I. lerichei, but 
examination of the daggernose shark teeth shown by 
Darteville and Casier (1943: i.e., pl. 13, figs.37, 39, 43-46) 
show that they are much larger and the angle between 
the cusp and lateral shoulders may be sharper than I. 
aikenensis. Antunes et al. (1981) tentatively reported 
I. lerichei from the Miocene of Portugal, but the two 
referred teeth (pl. 2, figs. 13 and 17) are, in our opinion, 
more appropriately referred to Carcharhinus. 

Isogomphodon oxryrhynchus is the only extant spe-
cies of daggernose shark, and it is largely restricted to 
coastal waters of northeastern South America (Lessa and 
others 1999, Lessa et al. 2016). Teeth of fossil Isogomph-
odon, particularly I. acuarias, are predominantly known 
from Mio-Pliocene deposits of the Tethyan regions of 
Europe and Africa, but an increasing number of reports 
document the taxon from temporally equivalent strata in 
South America (i.e., Carrillo-Briceño et al. 2016). Some 
of these latter records, however, are based on inaccurate 
identifications of teeth belonging to other Carcharhinidae 
(i.e., Mora 1999). Two reports of I. acuarius from North 
Carolina in the eastern United States have been published 
(Case 1980; Müller 1999). The strata yielding the fossils 
were considered to be of Miocene age, but the deposits 
are actually of Oligocene age (Harris and Zullo 1991; 
Zullo et al. 1992; Denison et al. 1993). Considering the 
limited geographic distribution and habitat preference 
of extant I. oxyrhynchus, it may be prudent to re-evaluate 
Oligo-Miocene records of the genus. Discovery of I. 
aikenensis in the Dry Branch Formation unequivocally 
extends the temporal range of the genus back to the late 
Eocene, and it is the only Eocene record in North America.

CARCHARHINIDAE genus indeterminate
(Fig. 4A–D)
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two juvenile upper tooth; SC2013.38.23, lower ante-
rior tooth; SC2013.38.24, lower anterolateral tooth; 
SC2013.38.25, lower lateral tooth; SC2013.38.26, five 
incomplete upper teeth.

Remarks—Monognathic and dignathic heterodonty 
can be discerned within the sample of 39 teeth. Upper 
anterior teeth are narrow and rather erect, whereas lat-
eral teeth are broadly triangular with a crown apex that 
is distinctively distally curved. The mesial edge of upper 
lateral teeth is completely smooth or weakly serrated 
on its basal half, but the distal edge is coarsely serrated 
nearly to the apex (Fig. 3M). Lower anterior teeth are 
comparatively narrower, erect, and serrations on cutting 
edges are restricted to the crown base (Fig. 3P).

Hemipristis teeth are distinctive in having very large 
cusplets along the distal crown edge, a characteristic evi-
dent even on teeth lacking enameloid (Fig. 3N). Hemipris-
tis curvatus (identified as He. wyattdurhami White, 1956 
in older literature) appears to have been widespread in 
the Eocene Atlantic and Gulf coastal regions, having been 
reported from North Carolina (Timmerman and Chan-
dler 1995), Georgia (Case 1981, Case and Borodin 2000, 
Parmley and Cicimurri 2003), Alabama (White 1956, 
Thurmond and Jones 1981), Louisiana (Manning and 
Standhardt 1986), and Arkansas (Westgate 1984). This 
taxon is easily separated from the temporally younger 
He. serra Agassiz, 1835 in that teeth are much smaller 
in size and the mesial cutting edges of lateral teeth are 
nearly or completely devoid of serrations.

SCYLIORHINIDAE Gill, 1862
FOUMTIZIA Noubhani and Cappetta, 1997

Foumtizia sp.
(Fig. 5A–G)

Referred specimens—SC96.97.5, incomplete 
tooth (Fig. 5D); SC96.97.6, incomplete tooth (Fig. 5E); 
SC96.97.7, incomplete tooth (Fig. 5F); SC96.97.8, in-
complete tooth (Fig. 5G); SCSC2001.1.42, incomplete 
tooth; SC2013.38.27, incomplete tooth (Fig. A–C); 
SC2013.38.28, two incomplete teeth; SC2013.38.159, 
lateral tooth.

Remarks—These scyliorhinid teeth are large enough 
(up to 4 mm in height) to be found in the field with the 
naked eye. Tooth crowns consist of a tall, erect, basally 
broad but sharply tapering cusp that is flanked by a 
pair of large lateral cusplets. The labial crown foot is 
thick, overhangs the root, and bears a conspicuous me-
dial concavity. A blunt cutting edge extends across the 
main cusp and generally only onto the inner side of the 
lateral cusplets. In terms of overall morphology these 

Referred specimens—SC2013.38.104, tooth; 
SC2013.38.105, tooth; SC2013.38.106, tooth; SC2013.38.107, 
tooth; SC2013.38.108, tooth; SC2013.38.109, three teeth.

Remarks—Unfortunately, the eight teeth lack 
enameloid. However, they are distinguished by the pres-
ence of a single pair of cusplets that mark the base of 
the main cusp and beginning of short enameloid shoul-
ders (Fig. 4A, C). These teeth are superficially similar 
to Abdounia enniskilleni, but whereas the cusplets of 
Ab. enniskilleni form the mesial and distal ends of the 
crown, cusplets of Carcharhinidae indet. are compara-
tively smaller and located near the middle of the crown 
(compare Fig. 3H, I to Fig. 4A, C). Some of the specimens 
are very similar to White’s (1926) Hypoprion overricus 
(reassigned to Abdounia overrica by Cappetta 2006), but 
the teeth in the Dry Branch sample differ in that cusplets 
appear to have been smaller. The Dry Branch teeth also 
bear similarities to Case’s (1980) Negaprion furmiskyi 
(Cappetta [2006] considers this species to belong within 
Abdounia), but a significant difference between the two 
morphologies is that the diminutive cusplets occur at the 
ends of the lateral shoulders on Ab. furimskyi, whereas 
they are between the end of the shoulder and the base 
of the cusp of the Dry Branch teeth. 

Comparison of the Dry Branch material to some of the 
late Eocene teeth identified by Case and Cappetta (1990) 
as Carcharhinus frequens (pl. 5, figs. 100–103, 106–107; 
pl. 7, figs. 143–144, 146–148, 151–159) revealed striking 
similarities. Case and Cappetta’s (1990) assignment of 
the Egyptian material to Carcharhinus frequens is in er-
ror because the teeth differ from most of the specimens 
illustrated by Dames (1883: pl. 3, fig. 7), which clearly 
possess a broader, lower cusp and exhibit serrated lateral 
shoulders. The frequens morphology was considered to 
be a species of Negaprion by Underwood et al. (2011), 
and they concluded that the sample examined by Case 
and Cappetta (1990) contained teeth of Negaprion and 
an undescribed species of Abdounia.

HEMIGALEIDAE Hasse, 1879
HEMIPRISTIS Agassiz, 1835

Hemipristis sp. cf. H. curvatus Dames, 1883
(Fig. 3M–P)

Referred specimens—SC96.97.33, upper lateral 
tooth; SC96.97.34, upper lateral tooth; SC96.97.35, 
lower lateral tooth; SC96.97.36, 13 incomplete teeth; 
SC2001.1.20, incomplete upper tooth; SC2001.1.21, up-
per tooth; SC2001.1.22, five upper teeth; SC2001.1.23, 
four incomplete teeth; SC2013.38.20, lower anterior 
tooth; SC2013.38.21, lower lateral tooth; SC2013.38.22, 
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Figure 5. Scyliorhinid shark teeth from the Dry Branch Formation (Priabonian) of Aiken County, South Carolina. A–G. Foumtizia 
sp. Anterior tooth in labial (A), lingual (B) and profile (C) views, SC2013.38. 27. Anterior tooth in labial (D) view, SC96.97.5. An-
terior tooth in labial (E) view, SC96.97.6. Anterior tooth in labial view (F), SC96.97.7. Anterior tooth in labial view (G), SC 96.97.8. 
H–N. Premontreia (Oxyscyllium) sp. cf. Pr. (O.) gilberti. Anterior tooth in labial (H) and distal (I) views, SC2013.38.29. Labial at left 
in I. Anterior? tooth in labial (J), lingual (K) and basal (L) views, SC2013.38.30. Lateral tooth in labial (M) and lingual (N) views, 
SC2013.38.31. O–CC. Scyliorhinus sp. Lateral tooth in labial (O), lingual (P), occlusal (Q), and basal (R) views, SC2013.38.36. An-
terolateral tooth in basal (S) view, SC2013.38.35. Lateral tooth in labial (T), lingual (U), and occlusal (V) views, SC2013.38.39. 
Lateral tooth in labial (W), lingual (X), and occlusal (Y) views, SC2013.38.37. Lateral tooth in labial (Z), lingual (AA), and occlusal 
(BB) views, SC2013.38.38. Anterior? tooth in occlusal (CC) view, SC2013.38.40. Labial at top in L, R, S; at bottom in Q, V, Y, BB, CC. 
Scale bars=1mm.

teeth compare well to Foumtizia, but the Dry Branch 
teeth are larger than any species previously attributed 
to that genus (Cappetta 1976, Noubhani and Cappetta 

1997, Malyshkina 2006). The preservation of our mate-
rial and small sample size (n=9) leads us to refrain from 
making a more specific identification. The morphological 
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features noted above, along with larger size and lack of 
enameloid ornamentation, distinguish the teeth from two 
other scyliorhinids occurring in the Dry Branch sample 
(see below).

PREMONTREIA Cappetta, 1992
Premontreia (Oxyscyllium) sp. 

cf. Pr. (O.) gilberti (Casier, 1946) 
Fig. 5H–N

Material examined —SC2013.38.29, tooth (Fig. 5H, 
I); SC2013.38.30, tooth (Fig. 5J–L); SC2013.38.31, tooth 
(Fig. 5M, N); SC2013.38.32, tooth; SC2013.38.33, tooth; 
SC2013.38.34, incomplete tooth. 

Remarks—The root morphology of our six specimens 
leads us to assign the teeth to Premontreinae Cappetta, 
1992, which currently contains the genera Premontreia 
and Pachyscyllium Reinecke and others, 2005. Noubhani 
and Cappetta (1997) have since divided Premontreia into 
two subgenera: Premontreia and Oxyscyllium. Although 
only the dentine core of the Dry Branch Formation 
specimens is preserved, we can discern that the tooth 
crowns bore coarse basal longitudinal ridges and they 
were distally inclined, which is in contrast to what is seen 
on teeth of the various Oligocene to Pliocene species of 
Pachyscyllium that have been described (Cappetta, 1970, 
Reinecke and others 2005, Haye et al. 2008, Reinecke et 
al. 2008). With respect to crown shape, the Dry Branch 
Formation teeth are identifiable to the subgenus Premon-
treia (Oxyscyllium) Noubhani and Cappetta, 1997 because 
of the large and well differentiated lateral cusplets. 
Additionally, we believe that the teeth compare favor-
ably to Pr. (O.) gilberti, a species formerly placed within 
Scyliorhinus (Casier 1946, Bor 1985, Nolf 1988, Kemp 
et al. 1990, Case et al. 1996, also Reinecke et al. 2008). 
We also consider specimens that Parmley and Cicimurri 
(2003) identified as Scyliorhinus gilberti and material 
identified as Scy. distans (Probst, 1879) by Manning and 
Standhardt (1986:fig. 1, no. 2) to be conspecific with the 
Dry Branch taxon.

SCYLIORHINUS Blainville, 1816
Scylliorhinus sp.

(Fig. 5O–CC)

Referred specimens—SC2001.1.42, incomplete 
tooth; SC2013.38.35, tooth; SC2013.38.36, tooth; 
SC2013.38.37, tooth; SC2013.38.38, tooth; SC2013.38.39, 
tooth; SC2013.38.40, tooth; SC2013.38.160, anterior 
tooth. 

Remarks—Unfortunately, our eight teeth lack 
enameloid and/or have broken cusps, and the true 

height of the main cusp and lateral cusplets cannot be 
determined. Teeth are distinctive in that the labial crown 
foot is highly concave so that two lobes, a short mesial and 
a more elongated distal lobe, are developed. One or two 
cusplets are found on the mesial lobe, but only one large 
cusplet occurs on the distal lobe. The specimens exhibit 
crown ornamentation and lateral cusplets, and they are 
of similar size to other scyliorhinid teeth in our sample 
that we identify as Premontreia (see above). However, 
the root morphology and strongly asymmetrical nature 
of the crown are not typical of species within the genus 
Premontreia (Noubhani and Cappetta 1997, Malyshkina 
2006, Mollen 2008). 

The discontinuous nature of the nutritive groove on 
our teeth is consistent with the morphology of Scyliorhi-
nus species identified elsewhere (Noubhani and Cappetta 
1997). The preservation of the Dry Branch teeth inhibits 
our ability to compare them to known species, but in 
terms of overall morphology they are similar to Paleocene 
Sc. entomodon Noubhani and Cappetta, 1997 of Morocco 
and Sc. joleaudi Cappetta, 1970 from the lower Miocene 
of France. However, the Dry Branch teeth differ from the 
Moroccan species in that the crown lobes are much more 
widely separated, and all specimens exhibit enameloid 
ornamentation (Noubhani and Cappetta 1997). The main 
cusp of Sc. joleaudi appears to have been larger than the 
Dry Branch taxon, the crown lobes are closer together, 
and cusplets are also larger (Cappetta 1970). A larger 
sample size and more complete material will help with 
making a more specific determination.

RHINOPRISTIFORMES Naylor et al., 2012
RHINOBATIDAE Bonaparte, 1835

RHINOBATOS Linck, 1790
Rhinobatos sp. 

(Fig. 6A–D)

Referred specimen—SC2013.38.45, tooth.
Remarks—The single tooth can be distinguished from 

teeth of Rhynchobatus Müller and Henle, 1837 (see be-
low) in lacking crown ornamentation, the medial lingual 
protuberance is very narrow, and flanking lateral protu-
berances are present (Fig. 6A). The crown apex is worn, 
and it is unclear if this tooth was low-crowned (female) 
or cuspidate (male). The tooth is identical to Rhinobatos 
teeth from the temporally older Clinchfield Formation of 
central Georgia (DJC, unpublished data). Although repre-
sented by a single specimen, the Dry Branch Rhinobatos 
exhibits features in common with middle to late Eocene 
Rhinob. steurbauti Cappetta and Nolf, 1981, including an 
elongated central lingual protuberance flanked by much 
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Figure 6. Batoid teeth from the Dry Branch Formation (Priabonian) of Aiken County, South Carolina. A–D. Rhinobatos sp. Tooth in 
occlusal (A), labial (B), profile (C), and basal (D) views, SC2013.38.45. E–H. Rhynchobatus sp. cf. Rhy. pristinus. Tooth in occlusal 
(E), labial (F), profile (G), and basal (H) views, SC2013.38.46. I–P. Dasyatis sp. cf. D. tricuspidatus. Male anterior tooth in labial (I) 
and distal (J) views, SC2013.38.42. Tooth in labial (K) and occlusal (L) views, SC2013.38.43. Tooth in occlusal (M), labial (N), pro-
file (O), and basal (P) views, SC2013.38.41. Q–Y. Dasyatis sp. SC2013.38.49. Male anterior tooth in labial (Q) and distal (R) views. 
Tooth in occlusal (S) view, SC2013.38.55. Tooth in occlusal (T), labial (U), and profile (V) views, SC2013.38.52. Tooth in occlusal 
(W), labial (X), and profile (Y) views, SC2013.38.53. Labial at top in A, D, E, H, L, M, P, S–T, W; at left in C, G, J, O, R, V, Y. Scale bars=1 
mm.

smaller and slightly diverging lateral protuberances 
(Cappetta and Nolf 1981, Case et al. 1996). Rhinobatos 
teeth occurring in upper Eocene strata of Georgia and 
Louisiana appear to be conspecific with the Dry Branch 
Formation species, and we believe that those records 
were erroneously identified as the Cretaceous taxon Rhi-
nob. casieri Cappetta and Case, 1975 (Case 1981, Manning 
and Standhardt 1986). Manning and Standhardt (1986) 

used the presence of Rhinobatos in a paleofauna as an 
indicator of a middle shelf-depth environment.

Cappetta and Case (2016) recently identified similar 
teeth from middle Eocene strata of Alabama as Pristis 
Linck, 1790. However, those teeth clearly have an elongat-
ed medial uvula flanked by lateral uvulae, whereas Pristis 
teeth lack lateral uvulae (Carrillo-Briceño et al. 2015, 
Carrillo-Briceño et al. 2016). Negative evidence within 
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the Dry Branch Formation sample, which lacks Pristidae 
Bonaparte, 1838 rostral spines, indicates sawfish were 
not present at the time of deposition. For the purposes 
of this report we identify SC2013.38.45 as Rhinobatos, 
but our generic assignment could change with a larger 
sample size that will allow for better comparisons to 
the tooth morphologies of other extant rhinopristiform 
genera. The Dry Branch Formation tooth bears some 
similarity to Glaucostegus typus Bennett, 1830 (Under-
wood et al. 2015), but its labial face appears to be more 
convex than seen on male and female teeth of Zapteryx 
brevirostris (Müller and Henle, 1841) (Rangel et al. 2014).

RHINIDAE Müller and Henle, 1841
RHYNCHOBATUS Müller and Henle, 1837

Rhynchobatus sp. cf. Rhy. pristinus (Probst, 1877)
(Fig. 6E–H)

Referred specimens—SC2013.38.46, tooth; 
SC2013.38.47, tooth; SC2013.38.48, tooth.

Remarks—The three teeth are easily distinguished as 
Rhynchobatus in having granular crown ornamentation 
and a central lingual protuberance that is long and wide, 
and flanking protuberances are absent (Fig. 6E). Two 
fossil Rhynchobatus species have been reported, Rhy. vin-
centi Jaekel, 1894 from Eocene deposits (Leriche 1905) 
and Rhy. pristinus from Oligo-Miocene strata (Cappetta 
1970, Cicimurri and Knight 2009). Overall, teeth of these 
two species are comparable in size and morphology, but 
Rhy. vincenti has a wider, shorter lingual protuberance 
than Rhy. pristinus (Jaekel 1894, Müller 1999). Jaekel 
(1894:76–77) makes no mention of ornamentation on 
Rhy. vincenti, and the Dry Branch specimens have a long 
and narrow protuberance similar to Rhy. pristinus. We 
tentatively refer the Dry Branch teeth to this latter spe-
cies due to limited sample available to us. Müller (1999) 
reported a damaged lower Eocene Rhynchobatus tooth 
that is similar to Rhy. vincenti, but he did not believe the 
taxa were conspecific. Although similar, teeth of Pristis 
differ from those of Rhynchobatus in lacking crown 
ornamentation, but having a sharp and conspicuous 
transverse crest. Additionally, Pristis teeth have a shorter 
lingual face but much more elongated medial uvula (Cap-
petta 2012, Carrillo-Briceño et al. 2015, Carrillo-Briceño 
et al. 2016).

MYLIOBATIFORMES Compagno 1973
DASYATIDAE Jordan 1888

DASYATIS Rafinesque 1810
Dasyatis sp. cf. D. tricuspidatus Casier 1946

(Fig. 6I–P)

Referred specimens—SC2013.38.41, tooth; 
SC2013.38.42, male tooth; SC2013.38.43, male tooth; 
SC2013.38.44, six teeth.

Remarks—Nine large Dasyatis teeth are characteristic 
in their lack of enameloid ornamentation, a feature that 
readily distinguishes them from most other species that 
have been reported from Eocene strata (Ward 1979b, 
Noubhani and Cappetta 1997). The intersection of the 
transverse crest with a sagittal lingual crest results in a 
tripartite division of the crown (i.e., Fig. 6M). This species 
was originally reported from lower Eocene strata of Bel-
gium (Casier 1946), and the taxon has subsequently been 
documented in middle Eocene strata of Europe (Kemp et 
al. 1990, Van den Eeckhaut and de Schutter 2009).

Dasyatis exhibits gynandric heterodonty (male teeth 
differ from those of females), but the identification of 
male and female teeth of a fossil species may not be as 
clear cut as previously thought. Kajiura and Tricas (1996) 
found that male and female teeth of Dasyatis sabina 
(=Hypanus sabinus) (Lesueur, 1824) may be nearly indis-
tinguishable from each other, with both sexes having low-
crowned teeth. However, as mating season approaches, 
male teeth exhibit a transition (Fig. 6K) to taller, highly 
cuspidate crowns that are effective at grasping pectoral 
fins of females during copulation (Kajiura et al. 2000). 
Assuming this phenomenon was developed in Eocene 
fossil species, isolated low-crowned teeth (Fig. 6M–P) 
in the Dry Branch sample could belong to males or fe-
males, whereas high-crowned cuspidate teeth belonged 
to males (Fig. 6I–J).

Dasyatis sp. 
(Fig. 6Q–Y)

Referred specimens—SC2013.38.49, male tooth; 
SC2013.38.51, 12 male teeth; SC2013.38.52, tooth; 
SC2013.38.53, tooth; SC2013.38.54, 39 teeth; SC2013.38.55, 
tooth; SC2013.38.161, four teeth.

Remarks—These 59 teeth differ from those of Dasyatis 
sp. cf. D. tricuspidatus (see above) in that they are smaller 
in overall size and are easily distinguished by their highly 
ornamented labial face (Fig. 6S, U, W). It is difficult to 
make accurate comparisons to other species with highly 
ornamented teeth (Ward 1979b, Noubhani and Cappetta 
1997) due to the lack of enameloid on the Dry Branch 
specimens. However, the teeth of D. jaekeli (Leriche, 
1905) have ornamentation that is generally restricted 
to the apical region of the labial face (Leriche 1905), 
and ornamentation on D. wochadunensis Ward, 1979b 
extends well onto the lingual side of the crown. Highly 
cuspidate teeth bearing weak labial ornamentation (i.e., 
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Fig. 6Q–R) are herein identified as male teeth, and we 
associate them with Dasyatis sp. due to their small size 
and ornamented labial face, in comparison to Dasyatis 
sp. cf. D. tricuspidatus discussed above.

MYLIOBATIDAE Bonaparte, 1838
AETOMYLAEUS Garman, 1908

Aetomylaeus sp.
(Fig. 7A–E)

Material examined —SC96.97.49, 17 incomplete me-
dian teeth; SC96.97.50, lateral tooth; SC96.97.51, lateral 
tooth; SC2001.1.1, eight partial median teeth; SC2001.1.2, 
incomplete median tooth; SC2001.1.29, lateral tooth; 
SC2001.1.30, three lateral teeth; SC2001.1.31, two in-
complete median teeth; SC2001.1.32, five partial median 
teeth; SC2013.38.80, partial median tooth; SC2013.38.81, 
two incomplete median teeth; SC2013.38.82, four in-
complete median teeth; SC2013.38.83, two lateral teeth.

Remarks—These 48 teeth are distinguished by their 
thick crowns with slightly lingually inclined labial and 
lingual faces. The labial face appears highly pitted (Fig. 
7A), whereas the lingual face has a granular texture and 
a very thin and sharp transverse ridge is located at the 
crown-root junction (Fig. 7B). Upper median teeth can 
be distinguished from those in the lower dentition in be-
ing more convex overall, with a straight to curved crown 
base that parallels the occlusal surface. In contrast, lower 
median teeth have a straight crown with flat occlusal sur-
face, and the crown foot is parallel to the basal root face. 
Lateral teeth are longer than wide and bear labial pitting 
and lingual tuberculation on crown faces (Fig. 7D, E).

The Dry Branch material appears to be conspecific 
with a myliobatoid occurring in the Clinchfield For-
mation of central Georgia (DJC unpublished data). In 
terms of overall morphology, this taxon compares quite 
favorably to Miocene teeth Cappetta (1970) identi-
fied as Pteromylaeus Garman, 1913, and to Myliobatis 
meridionalis (Gervais, 1852). Cappetta (2006) synony-
mized M. meridionalis with Pteromylaeus, and earlier 
Cappetta (1987:171) considered the possibility that the 
material he described in 1970 could represent old indi-
viduals of Aetomylaeus. Hovestadt and Hovestadt-Euler 
(1999) noted the difficulty of identifying isolated fossil 
myliobatidae teeth and stated that Pteromylaeus is only 
known from extant species. However, Hovestadt and 
Hovestadt-Euler (2013) later assigned several fossil spe-
cies previously identified as Myliobatis to Pteromylaeus 
and Aetomylaeus, thereby extending the record of the 
latter genera back into the Eocene. White (2014) more 
recently synonymized Pteromylaeus with Aetomylaeus, 

and the latter generic name is applied to the Dry Branch 
sample listed above.

PSEUDAETOBATUS Cappetta, 1986
Pseudaetobatus undulatus Cicimurri and Ebersole, 2015

(Fig. 7F–I)

Referred specimens—SC96.97.52, 22 medial tooth 
fragments; SC96.97.53, lateral tooth; SC2001.1.3, 
118 partial medial teeth; SC2001.1.4, three lateral 
teeth; SC2001.1.5, 10 lateral teeth; SC2001.1.6, lat-
eral tooth; SC2001.1.7, lateral tooth; SC2013.38.84, 
lower medial tooth; SC2013.38.85, upper medial tooth; 
SC2013.38.86, upper medial tooth; SC2013.38.87, upper 
medial tooth; SC2013.38.88, incomplete upper medial 
tooth; SC2013.38.89, incomplete upper medial tooth; 
SC2013.38.90, lower medial tooth; SC2013.38.91, lower 
distal-most lateral tooth; SC2013.38.92, upper distal-
most lateral tooth; SC2013.38.93, five lower distal-most 
laterals; SC2013.38.94, 12 upper distal-most lateral 
teeth; SC2013.38.95, lateral tooth; SC2013.38.96, five 
lateral teeth; SC2013.38.97, 87 incomplete medial teeth.

Remarks—We assign 275 teeth in our sample to 
Pseudaetobatus. Upper median teeth of Pseudaetobatus 
are wide and straight (Fig. 7F), whereas median teeth 
from the lower dental battery are more arcuate (Fig. 
7G). Median teeth are easily distinguished from those 
of Aetomylaeus (see above) in that the labial and lingual 
crown faces are only weakly ornamented (as opposed to 
heavily pitted labially and with granular texture lingually) 
and the lingual ridge at the crown/root junction is thick 
and rounded instead of thin and sharp. These features 
can also be used to distinguish the lateral teeth of both 
species, and the distal-most lateral teeth of Pseudaeto-
batus are also sinuous (Fig. 7I).

Pseudaetobatus has only recently been formally re-
ported from the United States, with two new species 
described by Cicimurri and Ebersole (2015). Pseudae-
tobatus belli Cicimurri and Ebersole, 2015 is an early 
Eocene species that occurs in Mississippi and Alabama, 
whereas Ps. undulatus is thus far only known from the 
upper Eocene Dry Branch Formation of South Carolina.

RHINOPTERA Cuvier, 1829
Rhinoptera sp.

(Fig. 7K–R)

Referred specimens—SC96.97.54, medial tooth; 
SC96.97.55, 8 lateral teeth; SC96.97.56, 38 tooth 
fragments; SC2001.1.11, 233 partial medial teeth; 
SC2001.1.12, lateral tooth; SC2001.1.13, lateral tooth; 
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Figure 7. Myliobatidae teeth from the Dry Branch Formation (Priabonian) of Aiken County, South Carolina. A–E. Aetomylaeus 
sp. Incomplete lower median tooth in labial (A), lingual (B), and occlusal (C) and views, SC2001.1.2. Lateral tooth in occlusal 
(D) and profile (E) views, SC2001.1.29. F–I. Pseudaetobatus undulatus. Upper median tooth in occlusal (F) view, SC2013.38.86. 
Lower median tooth in occlusal (G) view, SC2013.38.84. Upper right distal-most lateral tooth in occlusal (H) and labial (I) views, 
SC2013.38.91. Lateral tooth in occlusal (J) view, SC2013.38.96.2. K–R. Rhinoptera sp. Lateral tooth in labial (K), lingual (L), occlu-
sal (M), and basal (N) views, SC2001.1.12. Median tooth in occlusal (O), lingual (P), and basal (Q) views, SC2001.1.16. Lateral tooth 
in lingual (R) view, SC2013.38.70. Labial at top in C, D, F–H, J, M–O, Q; at right in E. Scale bars=1 cm in A–C, F–I, K–R; 5 mm in D, E, J.

SC2001.1.14, lateral tooth; SC2001.1.15, lateral tooth; 
SC2001.1.16, medial tooth; SC2001.1.17, 19 medial teeth; 
SC2013.38.69, medial tooth; SC2013.38.70, lateral tooth; 
SC2013.38.71, lateral tooth; SC013.38.72, lateral tooth; 
SC2013.38.73, lateral tooth; SC2013.38.74, four medial 
teeth; SC2013.38.75, three medial or proximal lateral 
teeth; SC2013.38.76, ten lateral teeth; SC2013.38.77, 
eight distal lateral teeth; SC2013.38.78, distal-most 

lateral tooth; SC2013.38.79, 100 incomplete teeth. 
Description—Rhinoptera is represented in our material 

by 435 teeth. Unworn teeth have a crown measuring up 
to 1 cm in thickness, but in cases of extreme wear crowns 
are only 2 mm thick. The labial and lingual faces of all 
teeth are vertical and flat, and ornamented with fine 
vertical wrinkles which grade apically into a granular 
texture on the lingual face. A large rounded transverse 
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ridge is located at the lingual crown/root junction (Fig. 
7L, P, R). The labial crown face overhangs the root, and 
there is a shallow groove on the ventral surface of the 
crown just anterior to the root (Fig. 7K). Median teeth 
(i.e., Fig. 7O–Q) measure up to 35 mm wide and 8 mm 
long (4.4:1 ratio). We observed, as did White (1926), that 
median teeth are evenly worn and may be arched (Fig. 
7P). The largest teeth that we consider to have been from 
the first lateral row measure between 23 mm and 25 mm 
in width and 5 mm to 9 mm in length. These teeth are 
easy to identify because the crown is obviously thicker 
on the mesial side than on the distal side (Fig. 7K, L, R), 
and root lobes are often oblique to the long axis of the 
tooth (Fig. 7N). Other specimens that we believe to be 
from the outermost row of lateral teeth are symmetrical 
or only slightly wider than long (1:0.7 ratio). These teeth 
are distinguished by having an angular mesial margin 
that articulates with the remainder of the dentition, 
but the distal margin is rounded. At this time we cannot 
ascertain if intermediate lateral positions were part of 
the dentition. 

Remarks—Unworn median teeth we refer to Rhi-
noptera have a square cross section, whereas those of 
Pseudaetobatus are rectangular. The labial and lingual 
crown faces of Rhinoptera sp. are vertical and bear fine 
vertical wrinkling, whereas the labial face of Aetomylaeus 
is concave with extensive pitting, and the lingual face is 
convex with granular ornamentation. In addition, the 
root lobes of Rhinoptera do not extend lingually past 
the crown base as they do on Pseudaetobatus and Ae-
tomylaeus. The lingual crown/root ridge on Rhinoptera 
is thick and rounded as opposed to thin and sharp on 
Aetomylaeus. 

The Dry Branch Rhinoptera is easily distinguished 
from Paleocene Rhinop. prisca Woodward, 1907 and Rhi-
nop. raeburni White, 1934 in that the crown is not nearly 
as thick, labial and lingual faces are nearly vertical and 
straight, and ornamentation is reduced to fine wrinkles 
or scattered nodes. Occlusal ornamentation appears to 
be absent, and nutritive grooves are more numerous and 
more closely spaced. Although of similar morphology, Dry 
Branch Rhinoptera teeth are larger than Rhinop. sherborni 
White, 1926 from the African Eocene, with the crown 
of the largest complete tooth in our sample measuring 
3.6 cm in width as opposed to only 1.7 cm (see White 
1926: pl. 10, figs. 16–26; also Arambourg 1952). Even 
considering specimens originally identified as Myliobatis 
by White (1926: pl. 10, fig. 5–7) but later considered by 
Arambourg (1952) to be Rhinop. sherborni medial teeth, 
the largest specimen measures only 2.5 cm.

Bearing these differences in mind, assigning a spe-
cies name to the Dry Branch Rhinoptera is somewhat 
problematical. The available material compares very 
well to Leidy’s (1855) Zygobates dubius from the “Ash-
ley Phosphate beds” region of South Carolina (Leidy did 
not illustrate teeth until 1877; see pl. 31, figs. 21–33). 
Leidy (1877:248) mentioned the possibility that his Z. 
dubius was conspecific with Trygon carolinensis named 
by Emmons (1858) from the Eocene of North Carolina. 
However, Emmons’ illustrated teeth (p. 243, figs. 91, 92) 
appear to be undulating rather than straight or weakly 
arched. Cappetta (2006) syonymized Z. dubius with 
Mio-Pliocene Rhinoptera studeri Agassiz, 1843, but un-
fortunately the stratigraphic position and age of Leidy’s 
fossils are unknown. Due to a lack of stratigraphic control 
and more limited knowledge of Cenozoic stratigraphy in 
Leidy’s time, material purportedly from the “Ashley Phos-
phate beds” of South Carolina could range in age from the 
Oligocene through Pleistocene epochs (Sanders 2002). 

Leriche (1927) illustrated a partial Rhinoptera denti-
tion (p. 44, fig. 6) that may shed some light on the issue. 
That specimen, from the Swiss Miocene, was identified as 
Rhinop. studeri and it clearly shows that a median tooth 
row and at least three lateral tooth rows were present. 
The first lateral tooth of the Swiss specimen is only 86% 
of the width of the median tooth, but the second median 
tooth is only 29% of the width of the medial tooth. We 
can only confirm two lateral tooth rows in the dentition 
of the Dry Branch taxon (first and distal-most lateral 
positions). Additionally, the first lateral tooth is 63% of 
the width of the median tooth. The Swiss Rhinop. studeri 
dentition appears to have been disjunct with respect to 
tooth size reduction towards the commissure, but size 
reduction within the Dry Branch appears to have been 
more gradual and similar to Recent Rhinop. brasiliensis 
(Bigelow and Schroeder 1953). Leidy’s Z. dubius appears 
to be identical to the Dry Branch taxon, and his fossils 
could be older than Miocene. Unfortunately, we can-
not corroborate these hypotheses, and at this time we 
identify the Dry Branch taxon only to the generic level. 
Interestingly, Darteville and Casier (1959) illustrated 
two teeth from the Eocene of western Africa (pl. 34, fig. 
2a–c. figs. 7, 8), identified as Myliobatis sp., that are very 
similar to the Dry Branch Rhinoptera.

DISCUSSION

Stratigraphic position of the Dry Branch 
elasmobranch assemblage

In the Aiken area, the Huber, Dry Branch, and Tobacco 
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Road Formations are generally visible at the surface as 
thin outcroppings along roadways and in housing sub-
divisions. Limited exposure, combined with a great deal 
of lithologic variability and inconsistent local thicken-
ing and thinning due in part to highly irregular contacts 
between these formations, makes identification of units 
and correlation of sections difficult. All of the exposures 
at the NAS are assignable to the Dry Branch Formation, 
and a thick grayish-white clay bed occurs at the base of 
the unit. Unfortunately, this site has been reclaimed as 
a housing development, and only thin patches of strata 
are currently exposed. Of the strata preserved in the 
E-W trending wall at the SAS, only the sediment within 
the lower 2.0–2.5 m belong to the Dry Branch Formation 
(we also dug a trench up to 1.3 m below ground level but 
only encountered more unconsolidated sand). The upper 
part of the section consists of indurated medium- to very 
coarse-grained quartz sands (grains are sub-rounded to 
rounded) that are poorly sorted and contain abundant 
interstitial clay, which we assign to the Tobacco Road 
Formation. A basal pebble lag is not obvious, but the 
contact with the Dry Branch Formation is irregular, and 
there is a sharp change from fine- to coarse-grained, 
pinkish to pale yellow quartz sand containing little in-
terstitial clay (soft and friable=Dry Branch Formation), 
to medium- to coarse-grained, poorly sorted quartz 
sand containing abundant orange interstitial clay (more 
indurated=Tobacco Road Formation). 

Consistent with previous observations of elasmo-
branch teeth occurring in the Dry Branch Formation 
(Zullo et al. 1982), the sample from the SAS is derived 
from the upper part of the formation, and the lithology 
is consistent with the Irwinton Sand as it is composed 
predominantly of golden-yellow, brownish-yellow, and 
pinkish to purple medium- to very coarse-grained quartz 
sand that is moderately well-sorted and generally con-
tains very little interstitial clay. 

The fossiliferous horizon at SAS is approximately 15 
cm thick and has variegated red and white color, with 
lesser amounts of yellow and orange. Within this ho-
rizon, vertebrate fossils are common and haphazardly 
distributed and oriented, small white clay clasts are com-
mon, and larger quartz clasts (>1 cm) are uncommon. 
Numerous small phosphatic steinkerns representing at 
least ten species of bivalves, ten species of gastropods, a 
scaphopod, a barnacle, possible branching bryozoa, and 
chelipeds of at least three species of decapod crustaceans 
are associated. The fossil horizon is located approxi-
mately two meters below the contact with the overlying 
Tobacco Road Formation. The unit directly underlies at 

least 15 cm of thin alternating beds of red sand and white 
sandy clay, and overlies a loose sand of more uniform 
yellow-orange color. 

Composition of the Dry Branch elasmobranch 
assemblage 

As noted earlier, identification of the Dry Branch shark 
teeth to the species level was sometimes hampered by the 
preservation of the material. The enameloid was often 
partly or completely leached, and the presence of crown 
ornamentation, height of lateral cusplets, and the nature 
of cutting edge serrations was difficult to discern on many 
specimens. For example, Figure 3A, B and 4L–M show 
teeth on which the enameloid is partially lost, whereas 
Figure 3 provides a contrast between teeth with (3O–P) 
and without (3M–N) enamleoid. However, it can be said 
that carcharhiniform sharks dominate the Dry Branch 
elasmobranch assemblage, with 11 taxa having been 
identified. The remaining component consists of one 
hexanchid, one squatinid, two orectolobiforms, and two 
lamniforms. The batiod portion of the fauna is composed 
of two rhinopristiform rays and five myliobatiform rays. 
Twenty-one taxa have presumed benthic/epibenthic 
habits (including Squatina, most of the charcharhini-
forms, batoids). These far outnumber the three with 
presumed pelagic habits that include Galeocerdo, Alopias, 
and Carcharias. The varied tooth morphologies in our 
sample are indicative of clutching, cutting, tearing, and 
crushing dentitions (Cappetta 1987), and a larger array 
of prey species was probably available, both vertebrate 
and invertebrate, than is presently indicated by the fos-
sil record. 

Depositional environment 
Vertebrate species occurrences at the NAS and SAS are 

very similar, and we believe that the depositional settings 
at the two sites were comparable. For both sites, evidence 
suggests shallow, subtropical, high-energy environments. 
The lithology and presence of terrestrial/brackish water 
vertebrates like gars, trionychid turtles, and crocodilians 
indicates very close proximity to the shoreline and influx 
of sediment via a river system. Minerals like kyanite 
and amphibole suggest local igneous and metamorphic 
rocks were sediment sources for the fossiliferous bed 
at the SAS.

If extant elasmobranchs can be utilized as proxy 
environmental indicators for fossil species, the taxa we 
identified from the Dry Branch Formation support the 
above hypotheses. Tawny nurse sharks (Nebrius) and se-
vengill sharks (Notorynchus) are predominantly inshore 
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inhabitants where water depth is between five to 30 m 
and one to 50 m, respectively, whereas daggernose sharks 
(Isogomphodon) prefer turbid waters near river mouths 
to depths of 40 m; the latter two species are apparently 
intolerant of hyposaline conditions (Compagno et al. 
2005). The discovery of a hexanchid in the Dry Branch 
Formation, occurring at both NAS and SAS, is particularly 
notable because these sharks have not previously been 
reported from the late Eocene of the Gulf and Atlantic 
coastal plains. Stingrays currently inhabiting coastal 
waters of South Carolina, including Hypanus sabinus, Hy. 
say (Lesueur, 1817), and Hy. americanus (Hildebrand and 
Schroeder, 1928), occur at depths of nine to 25 m (Snel-
son et al. 1988, McEachran and Carvalo 2002, Farmer 
2004, Aguiar et al. 2009). Wedgefish (Rhynchobatus) 
commonly occur in coastal waters to depths of 25 m 
(Compagno and Last 1999a), and cow-nosed rays (Rhi-
noptera) inhabit a variety of nearshore habitats in water 
depths up to 26 m (Compagno and Last 1999b). Although 
extant angel sharks (Squatina) inhabit a wide range of 
habitats, primarily remaining buried in the substrate 
waiting to ambush prey (Compagno 1984, Compagno et 
al. 2005), Case (1981) considered Squatina to be indica-
tive of an estuarine depositional environment, whereas 
Manning and Standhardt (1986) believed the absence 
of the genus was evidence for fully marine conditions.

Barnacle faunas reported from the Griffins Landing 
Sand have been used as an indication of a subtidal to in-
ner shelf environment, and the SAS Dry Branch sample 
contains at least one taxon (cf. Hesperibalanus Pilsbury, 
1916). We recovered several specimens of the coral En-
dopachys Milne Edwards and Haime, 1848, and extant 
species of this genus can be found in subtropical inner 
to middle shelf environments (20–100 m) where water 
temperatures are between 21° and 22° C (Brook 1999, 
Keller and Os’Kina 2008). An additional, unidentified 
coral, represented by several small and poorly preserved 
conical calyces, occurs at the SAS.

Many specimens recovered from both sites exhibit 
unusual circular depressions, including teeth of Hemipris-
tis, Carcharias, Negaprion, Myliobatidae, Sphyraena, and 
crocodile, as well as mollusk steinkerns, phosphate peb-
bles, and coprolites. These features are usually isolated 
and penetrate various depths into an object, and some-
times completely through. The surfaces of the markings 
are white. The marks are found primarily on the roots of 
the selachian teeth (one was observed at the crown base 
of a Carcharias tooth, where the enameloid covering is 
thinnest), directly on the crown of Sphyraena, and on the 
crown and root of Myliobatidae teeth. These markings are 

similar to features of bioerosion reported on Cretaceous 
fish teeth by Underwood et al. (1999:fig. 2e). However, 
we also observed the markings on steinkerns, phosphate 
pebbles and coprolites, and it is unclear if these are the 
result of pre-fossilization bioerosion or post-fossilization 
chemical alteration.

Connection to the Tethys Sea
The Dry Branch Formation elasmobranch assemblages 

from NAS and SAS share generic similarities to the Eo-
cene Tethyan region, with Squatina, Alopias, Galeocerdo, 
Abdounia, Physogaleus, Negaprion, Rhizoprionodon, and 
Rhinoptera having been reported from Europe, Africa, 
and Asia (Arambourg 1952, Adnet et al. 2010, Under-
wood et al. 2011, Zalmout et al. 2012, Malyshkina et al. 
2013). Hemipristis curvatus has been identified in Jordan 
(Mustafa and Zalmout 2002) and northern Africa (Dames 
1883, Priem 1905, Stromer 1905, Case and Cappetta 
1990), and Pseudaetobatus was originally described 
from the Eocene of Morocco (Cappetta 1986). Dasyatis 
tricuspidatus is known from Eocene strata of Belgium and 
England (Casier 1946, Kemp et al. 1990), and Rhinobatos 
steurbauti has been reported from the Paris Basin (Cap-
petta and Nolf 1981) and Uzbekistan (Case et al. 1996). 
Notorynchus kempi occurs in the Eocene of England 
(Ward 1979a, Kemp et al. 1990). 

Comparison to Barnwell Group elasmobranch 
assemblages from Georgia 

At the generic level, the elasmobranch assemblages re-
ported from Barnwell Group strata of Georgia (Clinchfield 
and Dry Branch Formations) are similar in faunal com-
position, and the South Carolina Dry Branch assemblage 
contains most of these genera, including Galeocerdo, 
Squatina, Nebrius, Carcharias, Premontreia, Hemipristis, 
Abdounia, Negaprion, Physogaleus, Rhinoptera, Aetomy-
laeus, and Dasyatis (Case 1981, Case and Borodin 2000, 
Parmley and Cicimurri 2003, DJC and JLK unpublished 
data). The Georgia assemblages also contain taxa not yet 
known in the South Carolina Dry Branch Formation, in-
cluding Otodus (Carcharocles) Jordan and Hannibal, 1923, 
Macrorhizodus Glikman, 1964, Heterodontus Blainville, 
1816, Pristis, and Propristis Dames, 1883 (see references 
cited above). Conversely, the South Carolina Dry Branch 
paleofaunas contain taxa not known from Georgia, in-
cluding Notorynchus, Isogomphodon, Rhynchobatus, and 
Pseudaetobatus. These differences could be related to 
collecting biases, but the samples from the Dry Branch 
Formation of South Carolina and the Clinchfield Forma-
tion of Georgia that we examined were obtained during 
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multiple site visits over the course of several years, 
through prospecting surfaces for exposed macrofossils 
and processing bulk matrix samples for microfossils. 
These units are not time-equivalent, and the differences 
could be related to variations in depositional environ-
ment, with, for example, absence of Otodus (Carcharocles) 
and Macrorhizodus from the South Carolina assemblage 
reflecting the very shallow, probably turbid conditions 
and/or course sandy substrate. However, Zalmout et al. 
(2012) reported both Otodus (Carcharocles) and Macro-
rhizodus from river-influened bay/estuarine deposits in 
Egypt, and perhaps these larger sharks were attracted 
to the area, where marine mammals were apparently 
plentiful. Marine mammals are thus far unknown from 
the Dry Branch Formation.

CONCLUSIONS
Not surprisingly, comparison of the vertebrate as-

semblages from the NAS and SAS revealed a similar 
taxonomic composition within the fish component . 
Both assemblages are derived from the upper part of 
the Dry Branch Formation and are separated by only 
13 km (SAS is nearly 7 km further inland). Both sites 
are thought to have been very close to the late Eocene 
shoreline, as crocodilian and trionychid turtle fragments 
were found at both sites . The SAS is thus far the furthest 
inland within the South Carolina Coastal Plain from which 
Eocene marine vertebrates have been reported. The SAS 
is also significant because it has now yielded two new 
elasmobranch species, including Pseudaetobatus undu-
latus (Cicimurri and Ebersole 2015) and Isogomphodon 
aikenensis described herein. The Dry Branch Formation 
sediments occurring at both sites, especially SAS, may 
have been derived from metamorphic rocks and/or peg-
matites located in Aiken County. The two elasmobranch 
assemblages we recovered are similar to, but less diverse 
than, those reported from the Clinchfield (Parmley and 
Cicimurri 2003) and Dry Branch (Case 1981, Case and 
Borodin 2000) Formations of central Georgia. Close prox-
imity to the shoreline could account for lower taxonomic 
diversity in the South Carolina Dry Branch assemblages, 
and large pelagic sharks like Macrorhizodus and Otodus 
(Carcharocles) may have preferred deeper water. How-
ever, diagenetic alteration/obliteration of remains (i.e., 
current action, bioerosion, chemical leaching) may also 
be a phenomenon affecting species diversity. The variety 
of elasmobranch and teleost tooth morphologies oc-
curring in the Dry Branch Formation indicates greater 
prey species richness (i.e., invertebrates and small ver-
tebrates) than is currently known. 

There are tantalizing clues that additional vertebrate 
faunas are preserved within other Eocene deposits in the 
region. We examined two small collections of vertebrate 
fossil that were made by Zullo and Kite (1985) during a 
study of barnacles from the Dry Branch Formation. Both 
samples were recovered from deposits attributed to the 
Griffins Landing Sand, and the various elasmobranch and 
bony fish species we identified are listed in Appendix 1. 
The shark teeth are well preserved and helped confirm 
the identity of some species that we collected from the 
Irwinton Sand. Kite (1982a) collected an assortment of 
elasmobranch remains from the middle Eocene Huber 
Formation, which underlies the Dry Branch Formation 
to the east of Aiken, and the species we identified from 
her illustrated material are listed in Appendix 2. She also 
noted that her material was poorly preserved, fragile, and 
had been altered to clay.

Finding additional vertebrate faunas within the Dry 
Branch Formation and other Barnwell Group strata in 
South Carolina may be a difficult task. It is interesting 
to note that, of eight stratigraphic sections of the Dry 
Branch Formation prepared by Kite (1982b), none were 
reported to contain vertebrate fossils. Attempts to revisit 
these sites have been thwarted because of landscape 
alteration or they no longer exist. For example, a borrow 
pit in northeastern Hollow Creek Quadrangle (stop 7 of 
Kite 1982b) is now used as an inert landfill. Other sites, 
like Kite’s (1982a) Huber Formation site and stop 4 of 
Zullo et al. (1982; locality SCGS-004, 33° 29’ 27” N lat., 
81° 49’ 5” W long.), are overgrown and part of housing 
subdivisions (as are the NAS and SAS). Additionally, the 
Griffins Landing Sand largely occurs in the subsurface 
of the region.

Even with abundant exposures, discovering elas-
mobranch teeth at other sites may not occur unless 
lithostratigraphic beds contain large fossils and/or 
concentrations of remains. Teeth are easily eroded from 
the fossiliferous horizon at the SAS, and larger specimens 
occurring as float are common around the base of the ex-
posure. As control samples, we collected matrix randomly 
from 110 cm, 100 cm, 60 cm, and 30 cm below the fossil 
horizon, as well as 10 cm and 165 cm above. We obtained 
two additional samples from the Tobacco Road Forma-
tion, one from within the lowermost 5 cm, and one 30 cm 
above the base. Of the 4.5 kg of matrix processed from 
each of these horizons, only two teeth were recovered in 
the sample from 60 cm below the fossiliferous horizon, 
and a few from the sample 10 cm above (thin-bedded red 
sand and white sandy clay). In contrast, the fossiliferous 
horizon at the SAS yielded approximately 30 specimens 
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per kg of matrix sampled.
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________________________________________________________________
Appendix 1. Fossil elasmobranch and bony fish spe-
cies identified from McKissick Museum samples of the 
Griffins Landing Sand, Dry Branch Formation, recov-
ered by Zullo and Kite (1985).
_______________________________________________________________________________________

McKissick Museum locality 03, Griffins Landing (Z 
–622).

Chondrichthyes
Carcharias sp.
Hemipristis curvatus
Abdounia enniskilleni
Rhizoprionodon sp. cf. Rhiz. ganntourensis
Rhinoptera sp.
Dasyatis sp. cf. D. tricuspidata

Osteichthyes
cf. Sphyraenodus sp.
Seriola sp.

McKissick Museum locality 06 (=South Carolina 
Geological Survey locality 2-49), Aiken County auger 
hole (Z- 723).

Chondrichthyes
Carcharias sp.
Negaprion gilmorei
Physogaleus sp.
Abdounia enniskilleni

Osteichthyes
cf. Sphyraenodus sp.

_______________________________________________________________
Appendix 2. Elasmobranch taxa from the Huber 
Formation exposed to the east of Aiken, Aiken County, 
South Carolina, based on material figured by Kite 
(1982a):
_______________________________________________________________________________________

Chondrichthyes
Carcharias sp. (Kite 1982a:fig. 2A-B)
Carcharhiniformes indet. (Kite 1982a:fig. 2C, left)
Rhizoprionodon sp. (Kite 1982a:fig. 2C, right)
Myliobatinae indet. (Kite 1982a:fig. 2D)
Rhinoptera sp. (Kite 1982a:fig. 2E)
indeterminate batoid caudal spines (Kite 1982a:fig.
2F)




